Results 1  10
of
154
On the Placement of Web Server Replicas
 In Proceedings of IEEE INFOCOM
, 2001
"... Abstract—Recently there has been an increasing deployment of content distribution networks (CDNs) that offer hosting services to Web content providers. CDNs deploy a set of servers distributed throughout the Internet and replicate provider content across these servers for better performance and avai ..."
Abstract

Cited by 344 (9 self)
 Add to MetaCart
(Show Context)
Abstract—Recently there has been an increasing deployment of content distribution networks (CDNs) that offer hosting services to Web content providers. CDNs deploy a set of servers distributed throughout the Internet and replicate provider content across these servers for better performance and availability than centralized provider servers. Existing work on CDNs has primarily focused on techniques for efficiently redirecting user requests to appropriate CDN servers to reduce request latency and balance load. However, little attention has been given to the development of placement strategies for Web server replicas to further improve CDN performance. In this paper, we explore the problem of Web server replica placement in detail. We develop several placement algorithms that use workload information, such as client latency and request rates, to make informed placement decisions. We then evaluate the placement algorithms using both synthetic and real network topologies, as well as Web server traces, and show that the placement of Web replicas is crucial to CDN performance. We also address a number of practical issues when using these algorithms, such as their sensitivity to imperfect knowledge about client workload and network topology, the stability of the input data, and methods for obtaining the input. Keywords—World Wide Web, replication, replica placement algorithm, content distribution network (CDN). I.
Selection of Views to Materialize in a Data Warehouse
, 1997
"... . A data warehouse stores materialized views of data from one or more sources, with the purpose of efficiently implementing decisionsupport or OLAP queries. One of the most important decisions in designing a data warehouse is the selection of materialized views to be maintained at the warehouse. The ..."
Abstract

Cited by 244 (5 self)
 Add to MetaCart
(Show Context)
. A data warehouse stores materialized views of data from one or more sources, with the purpose of efficiently implementing decisionsupport or OLAP queries. One of the most important decisions in designing a data warehouse is the selection of materialized views to be maintained at the warehouse. The goal is to select an appropriate set of views that minimizes total query response time and the cost of maintaining the selected views, given a limited amount of resource, e.g., materialization time, storage space etc. In this article, we develop a theoretical framework for the general problem of selection of views in a data warehouse. We present competitive polynomialtime heuristics for selection of views to optimize total query response time, for some important special cases of the general data warehouse scenario, viz.: (i) an AND view graph, where each query/view has a unique evaluation, and (ii) an OR view graph, in which any view can be computed from any one of its related views, e.g.,...
Improved approximation algorithms for uncapacitated facility location (Extended Abstract)
, 1998
"... ..."
(Show Context)
THE PRIMALDUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS
"... The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent researc ..."
Abstract

Cited by 143 (5 self)
 Add to MetaCart
The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent research applying the primaldual method to problems in network design.
Maximizing a Submodular Set Function subject to a Matroid Constraint (Extended Abstract)
 PROC. OF 12 TH IPCO
, 2007
"... Let f: 2 N → R + be a nondecreasing submodular set function, and let (N, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2approximation [9] for this problem. It is also known, via a reduction from the maxkcover problem, that there is no (1 ..."
Abstract

Cited by 115 (12 self)
 Add to MetaCart
(Show Context)
Let f: 2 N → R + be a nondecreasing submodular set function, and let (N, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2approximation [9] for this problem. It is also known, via a reduction from the maxkcover problem, that there is no (1 − 1/e + ɛ)approximation for any constant ɛ> 0, unless P = NP [6]. In this paper, we improve the 1/2approximation to a (1−1/e)approximation, when f is a sum of weighted rank functions of matroids. This class of functions captures a number of interesting problems including set coverage type problems. Our main tools are the pipage rounding technique of Ageev and Sviridenko [1] and a probabilistic lemma on monotone submodular functions that might be of independent interest. We show that the generalized assignment problem (GAP) is a special case of our problem; although the reduction requires N  to be exponential in the original problem size, we are able to interpret the recent (1 − 1/e)approximation for GAP by Fleischer et al. [10] in our framework. This enables us to obtain a (1 − 1/e)approximation for variants of GAP with more complex constraints.
Fast approximate energy minimization with label costs
, 2010
"... The αexpansion algorithm [7] has had a significant impact in computer vision due to its generality, effectiveness, and speed. Thus far it can only minimize energies that involve unary, pairwise, and specialized higherorder terms. Our main contribution is to extend αexpansion so that it can simult ..."
Abstract

Cited by 109 (9 self)
 Add to MetaCart
(Show Context)
The αexpansion algorithm [7] has had a significant impact in computer vision due to its generality, effectiveness, and speed. Thus far it can only minimize energies that involve unary, pairwise, and specialized higherorder terms. Our main contribution is to extend αexpansion so that it can simultaneously optimize “label costs ” as well. An energy with label costs can penalize a solution based on the set of labels that appear in it. The simplest special case is to penalize the number of labels in the solution. Our energy is quite general, and we prove optimality bounds for our algorithm. A natural application of label costs is multimodel fitting, and we demonstrate several such applications in vision: homography detection, motion segmentation, and unsupervised image segmentation. Our C++/MATLAB implementation is publicly available.
Facility Location under Uncertainty: A Review
 IIE Transactions
, 2004
"... Plants, distribution centers, and other facilities generally function for years or decades, during which time the environment in which they operate may change substantially. Costs, demands, travel times, and other inputs to classical facility location models may be highly uncertain. This has made th ..."
Abstract

Cited by 71 (6 self)
 Add to MetaCart
Plants, distribution centers, and other facilities generally function for years or decades, during which time the environment in which they operate may change substantially. Costs, demands, travel times, and other inputs to classical facility location models may be highly uncertain. This has made the development of models for facility location under uncertainty a high priority for researchers in both the logistics and stochastic/robust optimization communities. Indeed, a large number of the approaches that have been proposed for optimization under uncertainty have been applied to facility location problems. This paper reviews the literature...
Facility location models for distribution system design
, 2004
"... The design of the distribution system is a strategic issue for almost every company. The problem of locating facilities and allocating customers covers the core topics of distribution system design. Model formulations and solution algorithms which address the issue vary widely in terms of fundamenta ..."
Abstract

Cited by 70 (0 self)
 Add to MetaCart
The design of the distribution system is a strategic issue for almost every company. The problem of locating facilities and allocating customers covers the core topics of distribution system design. Model formulations and solution algorithms which address the issue vary widely in terms of fundamental assumptions, mathematical complexity and computational performance. This paper reviews some of the contributions to the current stateoftheart. In particular, continuous location models, network location models, mixedinteger programming models, and applications are summarized.
Maximizing a Monotone Submodular Function subject to a Matroid Constraint
, 2008
"... Let f: 2 X → R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2 approximation [14] for this problem. For certain special cases, e.g. max S≤k f(S), the greedy algorithm yields a (1 − 1/e)app ..."
Abstract

Cited by 64 (0 self)
 Add to MetaCart
Let f: 2 X → R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2 approximation [14] for this problem. For certain special cases, e.g. max S≤k f(S), the greedy algorithm yields a (1 − 1/e)approximation. It is known that this is optimal both in the value oracle model (where the only access to f is through a black box returning f(S) for a given set S) [28], and also for explicitly posed instances assuming P � = NP [10]. In this paper, we provide a randomized (1 − 1/e)approximation for any monotone submodular function and an arbitrary matroid. The algorithm works in the value oracle model. Our main tools are a variant of the pipage rounding technique of Ageev and Sviridenko [1], and a continuous greedy process that might be of independent interest. As a special case, our algorithm implies an optimal approximation for the Submodular Welfare Problem in the value oracle model [32]. As a second application, we show that the Generalized Assignment Problem (GAP) is also a special case; although the reduction requires X  to be exponential in the original problem size, we are able to achieve a (1 − 1/e − o(1))approximation for GAP, simplifying previously known algorithms. Additionally, the reduction enables us to obtain approximation algorithms for variants of GAP with more general constraints.