Results 1  10
of
88
Voronoi diagrams  a survey of a fundamental geometric data structure
 ACM COMPUTING SURVEYS
, 1991
"... This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. ..."
Abstract

Cited by 560 (5 self)
 Add to MetaCart
This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. The paper puts particular emphasis on the unified exposition of its mathematical and algorithmic properties. Finally, the paper provides the first comprehensive bibliography on Voronoi diagrams and related structures.
The quadtree and related hierarchical data structures
 ACM Computing Surveys
, 1984
"... A tutorial survey is presented of the quadtree and related hierarchical data structures. They are based on the principle of recursive decomposition. The emphasis is on the representation of data used in applications in image processing, computer graphics, geographic information systems, and robotics ..."
Abstract

Cited by 421 (11 self)
 Add to MetaCart
A tutorial survey is presented of the quadtree and related hierarchical data structures. They are based on the principle of recursive decomposition. The emphasis is on the representation of data used in applications in image processing, computer graphics, geographic information systems, and robotics. There is a greater emphasis on region data (i.e., twodimensional shapes) and to a lesser extent on point, curvilinear, and threedimensional data. A number of operations in which such data structures find use are examined in greater detail.
Survey of Polygonal Surface Simplification Algorithms
, 1997
"... This paper surveys methods for simplifying and approximating polygonal surfaces. A polygonal surface is a piecewiselinear surface in 3D defined by a set of polygons ..."
Abstract

Cited by 192 (3 self)
 Add to MetaCart
This paper surveys methods for simplifying and approximating polygonal surfaces. A polygonal surface is a piecewiselinear surface in 3D defined by a set of polygons
Constrained Delaunay triangulations
 Algorithmica
, 1989
"... Given a set of n vertices in the plane together with a set of noncrossing edges, the constrained Delaunay triangulation (CDT) is the triangulation of the vertices with the following properties: (1) the prespecified edges are included in the triangulation, and (2) it is as close as possible to the De ..."
Abstract

Cited by 169 (5 self)
 Add to MetaCart
Given a set of n vertices in the plane together with a set of noncrossing edges, the constrained Delaunay triangulation (CDT) is the triangulation of the vertices with the following properties: (1) the prespecified edges are included in the triangulation, and (2) it is as close as possible to the Delaunay triangulation. We show that the CDT can be built in optimal O(n log n) time using a divideandconquer technique. This matches the time required to build an arbitrary (unconstrained) Delaunay triangulation and the time required to build an arbitrary constrained (nonDelaunay) triangulation. CDTs, because of their relationship with Delaunay triangulations, have a number of properties that should make them useful for the finiteelement method. Applications also include motion planning in the presence of polygonal obstacles in the plane and constrained Euclidean minimum spanning trees, spanning trees subject to the restriction that some edges are prespecified. I’wnishi0tt to copy without tix all or part of thk material is granlcd provided thal IIIC wpics arc not nude or distributed li)r direct commercial advanlagc, the ACM copyright wficc and the title of lhc publication and its date appear. and notice is given that copying is hy permission ol the Association Car Computing Machinery. ‘To copy otherwise. or to republish. requires a fee and/or specific permission.
Supporting Dynamic Data Structures on DistributedMemory Machines
, 1995
"... this article, we describe an execution model for supporting programs that use pointerbased dynamic data structures. This model uses a simple mechanism for migrating a thread of control based on the layout of heapallocated data and introduces parallelism using a technique based on futures and lazy ..."
Abstract

Cited by 149 (8 self)
 Add to MetaCart
this article, we describe an execution model for supporting programs that use pointerbased dynamic data structures. This model uses a simple mechanism for migrating a thread of control based on the layout of heapallocated data and introduces parallelism using a technique based on futures and lazy task creation. We intend to exploit this execution model using compiler analyses and automatic parallelization techniques. We have implemented a prototype system, which we call Olden, that runs on the Intel iPSC/860 and the Thinking Machines CM5. We discuss our implementation and report on experiments with five benchmarks.
Adaptive Precision FloatingPoint Arithmetic and Fast Robust Geometric Predicates
 Discrete & Computational Geometry
, 1996
"... Exact computer arithmetic has a variety of uses including, but not limited to, the robust implementation of geometric algorithms. This report has three purposes. The first is to offer fast softwarelevel algorithms for exact addition and multiplication of arbitrary precision floatingpoint values. T ..."
Abstract

Cited by 134 (5 self)
 Add to MetaCart
Exact computer arithmetic has a variety of uses including, but not limited to, the robust implementation of geometric algorithms. This report has three purposes. The first is to offer fast softwarelevel algorithms for exact addition and multiplication of arbitrary precision floatingpoint values. The second is to propose a technique for adaptiveprecision arithmetic that can often speed these algorithms when one wishes to perform multiprecision calculations that do not always require exact arithmetic, but must satisfy some error bound. The third is to provide a practical demonstration of these techniques, in the form of implementations of several common geometric calculations whose required degree of accuracy depends on their inputs. These robust geometric predicates are adaptive; their running time depends on the degree of uncertainty of the result, and is usually small. These algorithms work on computers whose floatingpoint arithmetic uses radix two and exact rounding, including machines complying with the IEEE 754 standard. The inputs to the predicates may be arbitrary single or double precision floatingpoint numbers. C code is publicly available for the 2D and 3D orientation and incircle tests, and robust Delaunay triangulation using these tests. Timings of the implementations demonstrate their effectiveness. Supported in part by the Natural Sciences and Engineering Research Council of Canada under a 1967 Science and Engineering Scholarship and by the National Science Foundation under Grant CMS9318163. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either express or implied, of NSERC, NSF, or the U.S. Government. Keywords: arbitrary precision floatingpoint arit...
Delaunay Refinement Algorithms for Triangular Mesh Generation
 Computational Geometry: Theory and Applications
, 2001
"... Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of tria ..."
Abstract

Cited by 100 (0 self)
 Add to MetaCart
Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of triangles, and the grading of triangles from small to large sizes. This article presents an intuitive framework for analyzing Delaunay refinement algorithms that unifies the pioneering mesh generation algorithms of L. Paul Chew and Jim Ruppert, improves the algorithms in several minor ways, and most importantly, helps to solve the difficult problem of meshing nonmanifold domains with small angles.
Robust Adaptive FloatingPoint Geometric Predicates
 in Proc. 12th Annu. ACM Sympos. Comput. Geom
, 1996
"... Fast C implementations of four geometric predicates, the 2D and 3D orientation and incircle tests, are publicly available. Their inputs are ordinary single or double precision floatingpoint numbers. They owe their speed to two features. First, they employ new fast algorithms for arbitrary precision ..."
Abstract

Cited by 48 (1 self)
 Add to MetaCart
Fast C implementations of four geometric predicates, the 2D and 3D orientation and incircle tests, are publicly available. Their inputs are ordinary single or double precision floatingpoint numbers. They owe their speed to two features. First, they employ new fast algorithms for arbitrary precision arithmetic that have a strong advantage over other software techniques in computations that manipulate values of extended but small precision. Second, they are adaptive; their running time depends on the degree of uncertainty of the result, and is usually small. These algorithms work on computers whose floatingpoint arithmetic uses radix two and exact rounding, including machines that comply with the IEEE 754 floatingpoint standard. Timings of the predicates, in isolation and embedded in 2D and 3D Delaunay triangulation programs, verify their effectiveness. 1 Introduction Algorithms that make decisions based on geometric tests, such as determining which side of a line a point falls on, ...