Results 11  20
of
220
Statistical properties of community structure in large social and information networks
"... A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structur ..."
Abstract

Cited by 125 (10 self)
 Add to MetaCart
A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structural properties of such sets of nodes. We define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales, and we study over 70 large sparse realworld networks taken from a wide range of application domains. Our results suggest a significantly more refined picture of community structure in large realworld networks than has been appreciated previously. Our most striking finding is that in nearly every network dataset we examined, we observe tight but almost trivial communities at very small scales, and at larger size scales, the best possible communities gradually “blend in ” with the rest of the network and thus become less “communitylike.” This behavior is not explained, even at a qualitative level, by any of the commonlyused network generation models. Moreover, this behavior is exactly the opposite of what one would expect based on experience with and intuition from expander graphs, from graphs that are wellembeddable in a lowdimensional structure, and from small social networks that have served as testbeds of community detection algorithms. We have found, however, that a generative model, in which new edges are added via an iterative “forest fire” burning process, is able to produce graphs exhibiting a network community structure similar to our observations.
Some Applications of Laplace Eigenvalues of Graphs
 GRAPH SYMMETRY: ALGEBRAIC METHODS AND APPLICATIONS, VOLUME 497 OF NATO ASI SERIES C
, 1997
"... In the last decade important relations between Laplace eigenvalues and eigenvectors of graphs and several other graph parameters were discovered. In these notes we present some of these results and discuss their consequences. Attention is given to the partition and the isoperimetric properties of ..."
Abstract

Cited by 90 (0 self)
 Add to MetaCart
In the last decade important relations between Laplace eigenvalues and eigenvectors of graphs and several other graph parameters were discovered. In these notes we present some of these results and discuss their consequences. Attention is given to the partition and the isoperimetric properties of graphs, the maxcut problem and its relation to semidefinite programming, rapid mixing of Markov chains, and to extensions of the results to infinite graphs.
Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters
, 2008
"... A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins wit ..."
Abstract

Cited by 82 (6 self)
 Add to MetaCart
A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins with the premise that a community or a cluster should be thought of as a set of nodes that has more and/or better connections between its members than to the remainder of the network. In this paper, we explore from a novel perspective several questions related to identifying meaningful communities in large social and information networks, and we come to several striking conclusions. Rather than defining a procedure to extract sets of nodes from a graph and then attempt to interpret these sets as a “real ” communities, we employ approximation algorithms for the graph partitioning problem to characterize as a function of size the statistical and structural properties of partitions of graphs that could plausibly be interpreted as communities. In particular, we define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales. We study over 100 large realworld networks, ranging from traditional and online social networks, to technological and information networks and
Protovalue functions: A laplacian framework for learning representation and control in markov decision processes
 Journal of Machine Learning Research
, 2006
"... This paper introduces a novel spectral framework for solving Markov decision processes (MDPs) by jointly learning representations and optimal policies. The major components of the framework described in this paper include: (i) A general scheme for constructing representations or basis functions by d ..."
Abstract

Cited by 67 (9 self)
 Add to MetaCart
This paper introduces a novel spectral framework for solving Markov decision processes (MDPs) by jointly learning representations and optimal policies. The major components of the framework described in this paper include: (i) A general scheme for constructing representations or basis functions by diagonalizing symmetric diffusion operators (ii) A specific instantiation of this approach where global basis functions called protovalue functions (PVFs) are formed using the eigenvectors of the graph Laplacian on an undirected graph formed from state transitions induced by the MDP (iii) A threephased procedure called representation policy iteration comprising of a sample collection phase, a representation learning phase that constructs basis functions from samples, and a final parameter estimation phase that determines an (approximately) optimal policy within the (linear) subspace spanned by the (current) basis functions. (iv) A specific instantiation of the RPI framework using leastsquares policy iteration (LSPI) as the parameter estimation method (v) Several strategies for scaling the proposed approach to large discrete and continuous state spaces, including the Nyström extension for outofsample interpolation of eigenfunctions, and the use of Kronecker sum factorization to construct compact eigenfunctions in product spaces such as factored MDPs (vi) Finally, a series of illustrative discrete and continuous control tasks, which both illustrate the concepts and provide a benchmark for evaluating the proposed approach. Many challenges remain to be addressed in scaling the proposed framework to large MDPs, and several elaboration of the proposed framework are briefly summarized at the end.
Finite Metric Spaces  Combinatorics, Geometry and Algorithms
 In Proceedings of the International Congress of Mathematicians III
, 2002
"... This article deals only with what might be called the geometrization of combinatorics. Namely, the idea that viewing combinatorial objects from a geometric perspective often yields unexpected insights. Even more concretely, we concentrate on finite metric spaces and their embeddings ..."
Abstract

Cited by 48 (2 self)
 Add to MetaCart
This article deals only with what might be called the geometrization of combinatorics. Namely, the idea that viewing combinatorial objects from a geometric perspective often yields unexpected insights. Even more concretely, we concentrate on finite metric spaces and their embeddings
Markov Chains and Polynomial time Algorithms
, 1994
"... This paper outlines the use of rapidly mixing Markov Chains in randomized polynomial time algorithms to solve approximately certain counting problems. They fall into two classes: combinatorial problems like counting the number of perfect matchings in certain graphs and geometric ones like computing ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
This paper outlines the use of rapidly mixing Markov Chains in randomized polynomial time algorithms to solve approximately certain counting problems. They fall into two classes: combinatorial problems like counting the number of perfect matchings in certain graphs and geometric ones like computing the volumes of convex sets.
Nonembeddability theorems via Fourier analysis
"... Various new nonembeddability results (mainly into L1) are proved via Fourier analysis. In particular, it is shown that the Edit Distance on {0, 1}d has L1 distortion (log d) 12o(1). We also give new lower bounds on the L1 distortion of flat tori, quotients of the discrete hypercube under group ac ..."
Abstract

Cited by 44 (10 self)
 Add to MetaCart
Various new nonembeddability results (mainly into L1) are proved via Fourier analysis. In particular, it is shown that the Edit Distance on {0, 1}d has L1 distortion (log d) 12o(1). We also give new lower bounds on the L1 distortion of flat tori, quotients of the discrete hypercube under group actions, and the transportation cost (Earthmover) metric.
Isoperimetric graph partitioning for image segmentation
 IEEE Trans. on Pat. Anal. and Mach. Int
, 2006
"... Abstract—Spectral graph partitioning provides a powerful approach to image segmentation. We introduce an alternate idea that finds partitions with a small isoperimetric constant, requiring solution to a linear system rather than an eigenvector problem. This approach produces the high quality segment ..."
Abstract

Cited by 43 (11 self)
 Add to MetaCart
Abstract—Spectral graph partitioning provides a powerful approach to image segmentation. We introduce an alternate idea that finds partitions with a small isoperimetric constant, requiring solution to a linear system rather than an eigenvector problem. This approach produces the high quality segmentations of spectral methods, but with improved speed and stability. Index Terms—Graphtheoretic methods, graphs and networks, graph algorithms, image representation, special architectures, algorithms, computer vision, applications. æ 1