Results 1  10
of
136
Computational LambdaCalculus and Monads
, 1988
"... The calculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with terms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification 1 is introduced, that may jeopardise the ..."
Abstract

Cited by 505 (7 self)
 Add to MetaCart
(Show Context)
The calculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with terms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification 1 is introduced, that may jeopardise the applicability of theoretical results to real situations. In this paper we introduce a new calculus based on a categorical semantics for computations. This calculus provides a correct basis for proving equivalence of programs, independent from any specific computational model. 1 Introduction This paper is about logics for reasoning about programs, in particular for proving equivalence of programs. Following a consolidated tradition in theoretical computer science we identify programs with the closed terms, possibly containing extra constants, corresponding to some features of the programming language under consideration. There are three approaches to proving equivalence of programs: ffl T...
Automating the Meta Theory of Deductive Systems
, 2000
"... not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, a ..."
Abstract

Cited by 88 (16 self)
 Add to MetaCart
not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, and experimental results related to the areas of programming languages, type theory, and logics. Design: The metalogical framework extends the logical framework LF [HHP93] by a metalogic M + 2. This design is novel and unique since it allows higherorder encodings of deductive systems and induction principles to coexist. On the one hand, higherorder representation techniques lead to concise and direct encodings of programming languages and logic calculi. Inductive de nitions on the other hand allow the formalization of properties about deductive systems, such as the proof that an operational semantics preserves types or the proof that a logic is is a proof calculus whose proof terms are recursive functions that may be consistent.M +
The Taming of the Cut. Classical Refutations with Analytic Cut
 JOURNAL OF LOGIC AND COMPUTATION
, 1994
"... The method of analytic tableaux is a direct descendant of Gentzen's cutfree sequent calculus and is regarded as a paradigm of the notion of analytic deduction in classical logic. However, cutfree systems are anomalous from the prooftheoretical, the semantical and the computational point of vi ..."
Abstract

Cited by 63 (1 self)
 Add to MetaCart
The method of analytic tableaux is a direct descendant of Gentzen's cutfree sequent calculus and is regarded as a paradigm of the notion of analytic deduction in classical logic. However, cutfree systems are anomalous from the prooftheoretical, the semantical and the computational point of view. Firstly, they cannot represent the use of auxiliary lemmas in proofs. Secondly, they cannot express the bivalence of classical logic. Thirdly, they are extremely inefficient, as is emphasized by the "computational scandal" that such systems cannot polynomially simulate the truthtables. None of these anomalies occurs if the cut rule is allowed. This raises the problem of formulating a proof system which incorporates a cut rule and yet can provide a suitable model of classical analytic deduction. For this purpose we present an alternative refutation system for classical logic, that we call KE. This system, though being "close" to Smullyan's tableau method, is not cutfree but includes a class...
Proof Search in the Intuitionistic Sequent Calculus
 11th International Conference on Automated Deduction
, 1991
"... The use of Herbrand functions (more popularly known as Skolemization) plays an important role in classical theorem proving and logic programming. We define a notion of Herbrand functions for the full intuitionistic predicate calculus. The definition is based on the view that the prooftheoretic role ..."
Abstract

Cited by 46 (1 self)
 Add to MetaCart
The use of Herbrand functions (more popularly known as Skolemization) plays an important role in classical theorem proving and logic programming. We define a notion of Herbrand functions for the full intuitionistic predicate calculus. The definition is based on the view that the prooftheoretic role of Herbrand functions (to replace universal quantifiers), and of unification (to find instances corresponding to existential quantifiers), is to ensure that the eigenvariable conditions on a sequent proof are respected. The propositional impermutabilities that arise in the intuitionistic but not the classical sequent calculus motivate a generalization of the classical notion of Herbrand functions. Proof search using generalized Herbrand functions also provides a framework for generalizing logic programming to subsets of intuitionistic logic that are larger than Horn clauses. The search procedure described here has been implemented and observed to work effectively in practice. The generaliza...
Proof by Pointing
, 1994
"... This paper presents a principle for using locations in logical expressions to guide the process of building proofs. Using a sequentstyle presentation of theorem provers, we annotate the inference rules to specify an algorithm that associates the construction of a proof tree to a location within ..."
Abstract

Cited by 46 (9 self)
 Add to MetaCart
This paper presents a principle for using locations in logical expressions to guide the process of building proofs. Using a sequentstyle presentation of theorem provers, we annotate the inference rules to specify an algorithm that associates the construction of a proof tree to a location within a goal sequent. This principle provides a natural and effective use of the mouse in the userinterface of computer proof assistants. The implementation of the algorithm in a variety of theorem provers is discussed.
Complete sequent calculi for induction and infinite descent
 Proceedings of LICS22
, 2007
"... This paper compares two different styles of reasoning with inductively defined predicates, each style being encapsulated by a corresponding sequent calculus proof system. The first system supports traditional proof by induction, with induction rules formulated as sequent rules for introducing induct ..."
Abstract

Cited by 25 (8 self)
 Add to MetaCart
This paper compares two different styles of reasoning with inductively defined predicates, each style being encapsulated by a corresponding sequent calculus proof system. The first system supports traditional proof by induction, with induction rules formulated as sequent rules for introducing inductively defined predicates on the left of sequents. We show this system to be cutfree complete with respect to a natural class of Henkin models; the eliminability of cut follows as a corollary. The second system uses infinite (nonwellfounded) proofs to represent arguments by infinite descent. In this system, the left rules for inductively defined predicates are simple casesplit rules, and an infinitary, global condition on proof trees is required to ensure soundness. We show this system to be cutfree complete with respect to standard models, and again infer the eliminability of cut. The second infinitary system is unsuitable for formal reasoning. However, it has a natural restriction to proofs given by regular trees, i.e. to those proofs representable by finite graphs. This restricted “cyclic ” system subsumes the first system for proof by induction. We conjecture that the two systems are in fact equivalent, i.e., that proof by induction is equivalent to regular proof by infinite descent.
Linear lambdaCalculus and Categorical Models Revisited
, 1992
"... this paper we shall consider multiplicative exponential linear logic (MELL), i.e. the fragment which has multiplicative conjunction or tensor,\Omega , linear implication, \Gammaffi, and the logical operator "exponential", !. We recall the rules for MELL in a sequent calculus system in Fig ..."
Abstract

Cited by 25 (0 self)
 Add to MetaCart
this paper we shall consider multiplicative exponential linear logic (MELL), i.e. the fragment which has multiplicative conjunction or tensor,\Omega , linear implication, \Gammaffi, and the logical operator "exponential", !. We recall the rules for MELL in a sequent calculus system in Fig. 1. We use capital Greek letters \Gamma; \Delta for sequences of formulae and A; B for single formulae. The Exchange rule simply allows the permutation of assumptions. The `! rules' have been given names by other authors. ! L\Gamma1 is called Weakening , ! L\Gamma2 Contraction, ! L\Gamma3 Dereliction and (! R ) Promotion
C.: Principles of Superdeduction
 In: Proc. of the 22nd Annual IEEE Symposium on Logic in Computer Science (LICS
, 2007
"... In predicate logic, the proof that a theorem P holds in a theory Th is typically conducted in natural deduction or in the sequent calculus using all the information contained in the theory in a uniform way. Introduced ten years ago, Deduction modulo allows us to make use of the computational part of ..."
Abstract

Cited by 19 (9 self)
 Add to MetaCart
In predicate logic, the proof that a theorem P holds in a theory Th is typically conducted in natural deduction or in the sequent calculus using all the information contained in the theory in a uniform way. Introduced ten years ago, Deduction modulo allows us to make use of the computational part of the theory Th for true computations modulo which deductions are performed. Focussing on the sequent calculus, this paper presents and studies the dual concept where the theory is used to enrich the deduction system with new deduction rules in a systematic, correct and complete way. We call such a new deduction system “superdeduction”. We introduce a proofterm language and a cutelimination procedure both based on Christian Urban’s work on classical sequent calculus. Strong normalisation is proven under appropriate and natural hypothesis, therefore ensuring the consistency of the embedded theory and of the deduction system. The proofs obtained in such a new system are much closer to the human intuition and practice. We consequently show how superdeduction along with deduction modulo can be used to ground the formal foundations of new extendible proof assistants. We finally present lemuridæ, our current implementation of superdeduction modulo. 1
Computation with classical sequents
 MATHEMATICAL STRUCTURES OF COMPUTER SCIENCE
, 2008
"... X is an untyped continuationstyle formal language with a typed subset which provides a CurryHoward isomorphism for a sequent calculus for implicative classical logic. X can also be viewed as a language for describing nets by composition of basic components connected by wires. These features make X ..."
Abstract

Cited by 17 (16 self)
 Add to MetaCart
X is an untyped continuationstyle formal language with a typed subset which provides a CurryHoward isomorphism for a sequent calculus for implicative classical logic. X can also be viewed as a language for describing nets by composition of basic components connected by wires. These features make X an expressive platform on which algebraic objects and many different (applicative) programming paradigms can be mapped. In this paper we will present the syntax and reduction rules for X and in order to demonstrate the expressive power of X, we will show how elaborate calculi can be embedded, like the λcalculus, Bloo and Rose’s calculus of explicit substitutions λx, Parigot’s λµ and Curien and Herbelin’s λµ ˜µ.