Results 1  10
of
30
A Judgmental Reconstruction of Modal Logic
 Mathematical Structures in Computer Science
, 1999
"... this paper we reconsider the foundations of modal logic, following MartinL of's methodology of distinguishing judgments from propositions [ML85]. We give constructive meaning explanations for necessity (2) and possibility (3). This exercise yields a simple and uniform system of natural deduction for ..."
Abstract

Cited by 161 (38 self)
 Add to MetaCart
this paper we reconsider the foundations of modal logic, following MartinL of's methodology of distinguishing judgments from propositions [ML85]. We give constructive meaning explanations for necessity (2) and possibility (3). This exercise yields a simple and uniform system of natural deduction for intuitionistic modal logic which does not exhibit anomalies found in other proposals. We also give a new presentation of lax logic [FM97] and find that it is already contained in modal logic, using the decomposition of the lax modality fl A as
A concurrent logical framework I: Judgments and properties
, 2003
"... The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous con ..."
Abstract

Cited by 74 (25 self)
 Add to MetaCart
The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives# of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives #, & and #.
Permutability of Proofs in Intuitionistic Sequent Calculi
, 1996
"... We prove a folklore theorem, that two derivations in a cutfree sequent calculus for intuitionistic propositional logic (based on Kleene's G3) are interpermutable (using a set of basic "permutation reduction rules" derived from Kleene's work in 1952) iff they determine the same natural deductio ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
We prove a folklore theorem, that two derivations in a cutfree sequent calculus for intuitionistic propositional logic (based on Kleene's G3) are interpermutable (using a set of basic "permutation reduction rules" derived from Kleene's work in 1952) iff they determine the same natural deduction. The basic rules form a confluent and weakly normalising rewriting system. We refer to Schwichtenberg's proof elsewhere that a modification of this system is strongly normalising. Key words: intuitionistic logic, proof theory, natural deduction, sequent calculus. 1 Introduction There is a folklore theorem that two intuitionistic sequent calculus derivations are "really the same" iff they are interpermutable, using permutations as described by Kleene in [13]. Our purpose here is to make precise and prove such a "permutability theorem". Prawitz [18] showed how intuitionistic sequent calculus derivations determine natural deductions, via a mapping ' from LJ to NJ (here we consider only ...
Type Theory and Programming
, 1994
"... This paper gives an introduction to type theory, focusing on its recent use as a logical framework for proofs and programs. The first two sections give a background to type theory intended for the reader who is new to the subject. The following presents MartinLof's monomorphic type theory and an im ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
This paper gives an introduction to type theory, focusing on its recent use as a logical framework for proofs and programs. The first two sections give a background to type theory intended for the reader who is new to the subject. The following presents MartinLof's monomorphic type theory and an implementation, ALF, of this theory. Finally, a few small tutorial examples in ALF are given.
Presenting intuitive deductions via symmetric simplification
 In CADE10: Proceedings of the tenth international conference on Automated deduction
, 1990
"... In automated deduction systems that are intended for human use, the presentation of a proof is no less important than its discovery. For most of today’s automated theorem proving systems, this requires a nontrivial translation procedure to extract humanoriented deductions from machineoriented pro ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
In automated deduction systems that are intended for human use, the presentation of a proof is no less important than its discovery. For most of today’s automated theorem proving systems, this requires a nontrivial translation procedure to extract humanoriented deductions from machineoriented proofs. Previously known translation procedures, though complete, tend to produce unintuitive deductions. One of the major flaws in such procedures is that too often the rule of indirect proof is used where the introduction of a lemma would result in a shorter and more intuitive proof. We present an algorithm, symmetric simplification, for discovering useful lemmas in deductions of theorems in first and higherorder logic. This algorithm, which has been implemented in the TPS system, has the feature that resulting deductions may no longer have the weak subformula property. It is currently limited, however, in that it only generates lemmas of the form C ∨ ¬C ′ , where C and C ′ have the same negation normal form. 1
Minimal Typings in Atomic Subtyping
 In Conference Record of the 24th ACM Symposium on Principles of Programming Languages
, 1996
"... This paper studies the problem of simplifying typings and the sizecomplexity of most general typings in typed programming languages with atomic subtyping. We define a notion of minimal typings relating all typings which are equivalent with respect to instantiation. The notion of instance is that of ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
This paper studies the problem of simplifying typings and the sizecomplexity of most general typings in typed programming languages with atomic subtyping. We define a notion of minimal typings relating all typings which are equivalent with respect to instantiation. The notion of instance is that of Fuh and Mishra [13], which supports many interesting simplifications. We prove that every typable term has a unique minimal typing, which is the logically most succinct among all equivalent typings. We study completeness properties, with respect to our notion of minimality, of wellknown simplification techniques. Drawing upon these results, we prove a tight exponential lower bound for the worst case dagsize of constraint sets as well as of types in most general typings. To the best of our knowledge, the best previously proven lower bound was linear. 1 Introduction Subtyping is a fundamental idea in type systems for programming languages, which can in principle be integrated into standar...
On a Modal \lambdaCalculus for S4*
 Proceedings of the Eleventh Conference on Mathematical Foundations of Programming Sematics
, 1995
"... We present !2 , a concise formulation of a proof term calculus for the intuitionistic modal logic S4 that is wellsuited for practical applications. We show that, with respect to provability, it is equivalent to other formulations in the literature, sketch a simple type checking algorithm, and pr ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
We present !2 , a concise formulation of a proof term calculus for the intuitionistic modal logic S4 that is wellsuited for practical applications. We show that, with respect to provability, it is equivalent to other formulations in the literature, sketch a simple type checking algorithm, and prove subject reduction and the existence of canonical forms for welltyped terms. Applications include a new formulation of natural deduction for intuitionistic linear logic, modal logical frameworks, and a logical analysis of staged computation and bindingtime analysis for functional languages [6]. 1 Introduction Modal operators familiar from traditional logic have received renewed attention in computer science through their importance in linear logic. Typically, they are described axiomatically in the style of Hilbert or via sequent calculi. However, the CurryHoward isomorphism between proofs and terms is most poignant for natural deduction, so natural deduction formulations of modal and...