Results 11  20
of
210
The Theory of LEGO  A Proof Checker for the Extended Calculus of Constructions
, 1994
"... LEGO is a computer program for interactive typechecking in the Extended Calculus of Constructions and two of its subsystems. LEGO also supports the extension of these three systems with inductive types. These type systems can be viewed as logics, and as meta languages for expressing logics, and LEGO ..."
Abstract

Cited by 68 (10 self)
 Add to MetaCart
LEGO is a computer program for interactive typechecking in the Extended Calculus of Constructions and two of its subsystems. LEGO also supports the extension of these three systems with inductive types. These type systems can be viewed as logics, and as meta languages for expressing logics, and LEGO is intended to be used for interactively constructing proofs in mathematical theories presented in these logics. I have developed LEGO over six years, starting from an implementation of the Calculus of Constructions by G erard Huet. LEGO has been used for problems at the limits of our abilities to do formal mathematics. In this thesis I explain some aspects of the metatheory of LEGO's type systems leading to a machinechecked proof that typechecking is decidable for all three type theories supported by LEGO, and to a verified algorithm for deciding their typing judgements, assuming only that they are normalizing. In order to do this, the theory of Pure Type Systems (PTS) is extended and f...
Inductive Families
 Formal Aspects of Computing
, 1997
"... A general formulation of inductive and recursive definitions in MartinLof's type theory is presented. It extends Backhouse's `DoItYourself Type Theory' to include inductive definitions of families of sets and definitions of functions by recursion on the way elements of such sets are generated. Th ..."
Abstract

Cited by 65 (13 self)
 Add to MetaCart
A general formulation of inductive and recursive definitions in MartinLof's type theory is presented. It extends Backhouse's `DoItYourself Type Theory' to include inductive definitions of families of sets and definitions of functions by recursion on the way elements of such sets are generated. The formulation is in natural deduction and is intended to be a natural generalization to type theory of MartinLof's theory of iterated inductive definitions in predicate logic. Formal criteria are given for correct formation and introduction rules of a new set former capturing definition by strictly positive, iterated, generalized induction. Moreover, there is an inversion principle for deriving elimination and equality rules from the formation and introduction rules. Finally, there is an alternative schematic presentation of definition by recursion. The resulting theory is a flexible and powerful language for programming and constructive mathematics. We hint at the wealth of possible applic...
A General Formulation of Simultaneous InductiveRecursive Definitions in Type Theory
 Journal of Symbolic Logic
, 1998
"... The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by recursi ..."
Abstract

Cited by 65 (10 self)
 Add to MetaCart
The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by recursion on the way the elements of U0 are generated. In this paper we argue that there is an underlying general notion of simultaneous inductiverecursive definition which is implicit in MartinLöf's intuitionistic type theory. We extend previously given schematic formulations of inductive definitions in type theory to encompass a general notion of simultaneous inductionrecursion. This enables us to give a unified treatment of several interesting constructions including various universe constructions by Palmgren, Griffor, Rathjen, and Setzer and a constructive version of Aczel's Frege structures. Consistency of a restricted version of the extension is shown by constructing a realisability model ...
Typing correspondence assertions for communication protocols
 Theoretical Computer Science
, 2001
"... Abstract Woo and Lam propose correspondence assertions for specifying authenticity properties of security protocols. The only prior work on checking correspondence assertions depends on modelchecking and is limited to finitestate systems. We propose a dependent type and effect system for checking ..."
Abstract

Cited by 58 (10 self)
 Add to MetaCart
Abstract Woo and Lam propose correspondence assertions for specifying authenticity properties of security protocols. The only prior work on checking correspondence assertions depends on modelchecking and is limited to finitestate systems. We propose a dependent type and effect system for checking correspondence assertions. Since it is based on typechecking, our method is not limited to finitestate systems. This paper presents our system in the simple and general setting of the sscalculus. We show how to typecheck correctness properties of example communication protocols based on secure channels. In a related paper, we extend our system to the more complex and specific setting of checking cryptographic protocols based on encrypted messages sent over insecure channels. 1 Introduction Correspondence Assertions To a first approximation, a correspondence assertion about a communication protocol is an intention that follows the pattern: If one principal ever reaches a certain point in a protocol, then some other principal has previously reached some other matching point in the protocol.
Generic programming within dependently typed programming
 In Generic Programming, 2003. Proceedings of the IFIP TC2 Working Conference on Generic Programming, Schloss Dagstuhl
, 2003
"... Abstract We show how higher kinded generic programming can be represented faithfully within a dependently typed programming system. This development has been implemented using the Oleg system. The present work can be seen as evidence for our thesis that extensions of type systems can be done by prog ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
Abstract We show how higher kinded generic programming can be represented faithfully within a dependently typed programming system. This development has been implemented using the Oleg system. The present work can be seen as evidence for our thesis that extensions of type systems can be done by programming within a dependently typed language, using data as codes for types. 1.
Set theory for verification: I. From foundations to functions
 J. Auto. Reas
, 1993
"... A logic for specification and verification is derived from the axioms of ZermeloFraenkel set theory. The proofs are performed using the proof assistant Isabelle. Isabelle is generic, supporting several different logics. Isabelle has the flexibility to adapt to variants of set theory. Its higherord ..."
Abstract

Cited by 46 (18 self)
 Add to MetaCart
A logic for specification and verification is derived from the axioms of ZermeloFraenkel set theory. The proofs are performed using the proof assistant Isabelle. Isabelle is generic, supporting several different logics. Isabelle has the flexibility to adapt to variants of set theory. Its higherorder syntax supports the definition of new binding operators. Unknowns in subgoals can be instantiated incrementally. The paper describes the derivation of rules for descriptions, relations and functions, and discusses interactive proofs of Cantor’s Theorem, the Composition of Homomorphisms challenge [9], and Ramsey’s Theorem [5]. A generic proof assistant can stand up against provers dedicated to particular logics. Key words. Isabelle, set theory, generic theorem proving, Ramsey’s Theorem,
Natural Semantics and Some of its MetaTheory in Elf
 PROCEEDINGS OF THE SECOND INTERNATIONAL WORKSHOP ON EXTENSIONS OF LOGIC PROGRAMMING
, 1991
"... Operational semantics provide a simple, highlevel and elegant means of specifying interpreters for programming languages. In natural semantics, a form of operational semantics, programs are traditionally represented as firstorder tree structures and reasoned about using natural deductionlike meth ..."
Abstract

Cited by 44 (14 self)
 Add to MetaCart
Operational semantics provide a simple, highlevel and elegant means of specifying interpreters for programming languages. In natural semantics, a form of operational semantics, programs are traditionally represented as firstorder tree structures and reasoned about using natural deductionlike methods. Hannan and Miller combined these methods with higherorder representations using Prolog. In this paper we go one step further and investigate the use of the logic programming language Elf to represent natural semantics. Because Elf is based on the LF Logical Framework with dependent types, it is possible to write programs that reason about their own partial correctness. We illustrate these techniques by giving type checking rules and operational semantics for MiniML, a small functional language based on a simply typed calculus with polymorphism, constants, products, conditionals, and recursive function definitions. We also partially internalize proofs for some metatheoretic properti...
Indexed InductionRecursion
, 2001
"... We give two nite axiomatizations of indexed inductiverecursive de nitions in intuitionistic type theory. They extend our previous nite axiomatizations of inductiverecursive de nitions of sets to indexed families of sets and encompass virtually all de nitions of sets which have been used in ..."
Abstract

Cited by 44 (16 self)
 Add to MetaCart
We give two nite axiomatizations of indexed inductiverecursive de nitions in intuitionistic type theory. They extend our previous nite axiomatizations of inductiverecursive de nitions of sets to indexed families of sets and encompass virtually all de nitions of sets which have been used in intuitionistic type theory. The more restricted of the two axiomatization arises naturally by considering indexed inductiverecursive de nitions as initial algebras in slice categories, whereas the other admits a more general and convenient form of an introduction rule.