Results 1  10
of
270
A Framework for Defining Logics
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1993
"... The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of ariti ..."
Abstract

Cited by 702 (39 self)
 Add to MetaCart
The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of arities. The treatment of rules and proofs focuses on his notion of a judgement. Logics are represented in LF via a new principle, the judgements as types principle, whereby each judgement is identified with the type of its proofs. This allows for a smooth treatment of discharge and variable occurrence conditions and leads to a uniform treatment of rules and proofs whereby rules are viewed as proofs of higherorder judgements and proof checking is reduced to type checking. The practical benefit of our treatment of formal systems is that logicindependent tools such as proof editors and proof checkers can be constructed.
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. ..."
Abstract

Cited by 215 (44 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
Primitive Recursion for HigherOrder Abstract Syntax
 Theoretical Computer Science
, 1997
"... ..."
On Equivalence and Canonical Forms in the LF Type Theory
 ACM Transactions on Computational Logic
, 2001
"... Decidability of definitional equality and conversion of terms into canonical form play a central role in the metatheory of a typetheoretic logical framework. Most studies of definitional equality are based on a confluent, stronglynormalizing notion of reduction. Coquand has considered a different ..."
Abstract

Cited by 84 (17 self)
 Add to MetaCart
Decidability of definitional equality and conversion of terms into canonical form play a central role in the metatheory of a typetheoretic logical framework. Most studies of definitional equality are based on a confluent, stronglynormalizing notion of reduction. Coquand has considered a different approach, directly proving the correctness of a practical equivalence algorithm based on the shape of terms. Neither approach appears to scale well to richer languages with unit types or subtyping, and neither directly addresses the problem of conversion to canonical form.
Infinite Objects in Type Theory
"... . We show that infinite objects can be constructively understood without the consideration of partial elements, or greatest fixedpoints, through the explicit consideration of proof objects. We present then a proof system based on these explanations. According to this analysis, the proof expressions ..."
Abstract

Cited by 84 (2 self)
 Add to MetaCart
. We show that infinite objects can be constructively understood without the consideration of partial elements, or greatest fixedpoints, through the explicit consideration of proof objects. We present then a proof system based on these explanations. According to this analysis, the proof expressions should have the same structure as the program expressions of a pure functional lazy language: variable, constructor, application, abstraction, case expressions, and local let expressions. 1 Introduction The usual explanation of infinite objects relies on the use of greatest fixedpoints of monotone operators, whose existence is justified by the impredicative proof of Tarski's fixed point theorem. The proof theory of such infinite objects, based on the so called coinduction principle, originally due to David Park [21] and explained with this name for instance in the paper [18], reflects this explanation. Constructively, to rely on such impredicative methods is somewhat unsatisfactory (see fo...
Automating the Meta Theory of Deductive Systems
, 2000
"... not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, a ..."
Abstract

Cited by 80 (16 self)
 Add to MetaCart
not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, and experimental results related to the areas of programming languages, type theory, and logics. Design: The metalogical framework extends the logical framework LF [HHP93] by a metalogic M + 2. This design is novel and unique since it allows higherorder encodings of deductive systems and induction principles to coexist. On the one hand, higherorder representation techniques lead to concise and direct encodings of programming languages and logic calculi. Inductive de nitions on the other hand allow the formalization of properties about deductive systems, such as the proof that an operational semantics preserves types or the proof that a logic is is a proof calculus whose proof terms are recursive functions that may be consistent.M +
Grammatical Framework: A TypeTheoretical Grammar Formalism
, 2003
"... Grammatical Framework (GF) is a specialpurpose functional language for defining grammars. It uses a Logical Framework (LF) for a description of abstract syntax, and adds to this a notation for defining concrete syntax. GF grammars themselves are purely declarative, but can be used both for lineariz ..."
Abstract

Cited by 73 (19 self)
 Add to MetaCart
Grammatical Framework (GF) is a specialpurpose functional language for defining grammars. It uses a Logical Framework (LF) for a description of abstract syntax, and adds to this a notation for defining concrete syntax. GF grammars themselves are purely declarative, but can be used both for linearizing syntax trees and parsing strings. GF can describe both formal and natural languages. The key notion of this description is a grammatical object, which is not just a string, but a record that contains all information on inflection and inherent grammatical features such as number and gender in natural languages, or precedence in formal languages. Grammatical objects have a type system, which helps to eliminate runtime errors in language processing. In the same way as an LF, GF uses...