Results 1  10
of
257
The Logic of Typed Feature Structures
, 1992
"... Feature Structures and Path Congruences. The discussion of abstract feature structures raises a historical difficulty. While I do not dispute that the full theoretical investigation of feature structures modulo renaming is correctly attributed to Moshier, the idea of representing renaming classes b ..."
Abstract

Cited by 330 (3 self)
 Add to MetaCart
Feature Structures and Path Congruences. The discussion of abstract feature structures raises a historical difficulty. While I do not dispute that the full theoretical investigation of feature structures modulo renaming is correctly attributed to Moshier, the idea of representing renaming classes by equivalence relations over paths seems an obvious variant of the representation of such classes as deductively closed sets of path equations in Pereira and Shieber's account (1984) of the semantics of PATRII, which is further explored in Shieber's dissertation (1989).
Complexity and Expressive Power of Logic Programming
, 1997
"... This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results ..."
Abstract

Cited by 281 (57 self)
 Add to MetaCart
This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results on plain logic programming (pure Horn clause programs), more recent results on various important extensions of logic programming are surveyed. These include logic programming with different forms of negation, disjunctive logic programming, logic programming with equality, and constraint logic programming. The complexity of the unification problem is also addressed.
Tabled Evaluation with Delaying for General Logic Programs
, 1996
"... SLD resolution with negation as finite failure (SLDNF) reflects the procedural interpretation of predicate calculus as a programming language and forms the computational basis for Prolog systems. Despite its advantages for stackbased memory management, SLDNF is often not appropriate for query evalu ..."
Abstract

Cited by 260 (27 self)
 Add to MetaCart
SLD resolution with negation as finite failure (SLDNF) reflects the procedural interpretation of predicate calculus as a programming language and forms the computational basis for Prolog systems. Despite its advantages for stackbased memory management, SLDNF is often not appropriate for query evaluation for three reasons: a) it may not terminate due to infinite positive recursion; b) it may not terminate due to infinite recursion through negation; c) it may repeatedly evaluate the same literal in a rule body, leading to unacceptable performance. We address three problems fir a goaloriented query evaluation of general logic programs by presenting tabled evaluation with delaying (SLG resolution).
HiLog: A foundation for higherorder logic programming
 JOURNAL OF LOGIC PROGRAMMING
, 1993
"... We describe a novel logic, called HiLog, and show that it provides a more suitable basis for logic programming than does traditional predicate logic. HiLog has a higherorder syntax and allows arbitrary terms to appear in places where predicates, functions and atomic formulas occur in predicate calc ..."
Abstract

Cited by 213 (40 self)
 Add to MetaCart
We describe a novel logic, called HiLog, and show that it provides a more suitable basis for logic programming than does traditional predicate logic. HiLog has a higherorder syntax and allows arbitrary terms to appear in places where predicates, functions and atomic formulas occur in predicate calculus. But its semantics is firstorder and admits a sound and complete proof procedure. Applications of HiLog are discussed, including DCG grammars, higherorder and modular logic programming, and deductive databases.
Logic Programming in the LF Logical Framework
, 1991
"... this paper we describe Elf, a metalanguage intended for environments dealing with deductive systems represented in LF. While this paper is intended to include a full description of the Elf core language, we only state, but do not prove here the most important theorems regarding the basic building b ..."
Abstract

Cited by 175 (50 self)
 Add to MetaCart
this paper we describe Elf, a metalanguage intended for environments dealing with deductive systems represented in LF. While this paper is intended to include a full description of the Elf core language, we only state, but do not prove here the most important theorems regarding the basic building blocks of Elf. These proofs are left to a future paper. A preliminary account of Elf can be found in [26]. The range of applications of Elf includes theorem proving and proof transformation in various logics, definition and execution of structured operational and natural semantics for programming languages, type checking and type inference, etc. The basic idea behind Elf is to unify logic definition (in the style of LF) with logic programming (in the style of Prolog, see [22, 24]). It achieves this unification by giving types an operational interpretation, much the same way that Prolog gives certain formulas (Hornclauses) an operational interpretation. An alternative approach to logic programming in LF has been developed independently by Pym [28]. Here are some of the salient characteristics of our unified approach to logic definition and metaprogramming. First of all, the Elf search process automatically constructs terms that can represent objectlogic proofs, and thus a program need not construct them explicitly. This is in contrast to logic programming languages where executing a logic program corresponds to theorem proving in a metalogic, but a metaproof is never constructed or used and it is solely the programmer's responsibility to construct objectlogic proofs where they are needed. Secondly, the partial correctness of many metaprograms with respect to a given logic can be expressed and proved by Elf itself (see the example in Section 5). This creates the possibilit...
Rewriting Logic as a Logical and Semantic Framework
, 1993
"... Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are und ..."
Abstract

Cited by 147 (52 self)
 Add to MetaCart
Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are understood as mappings L ! F that translate one logic into the other in a conservative way. The ease with which such maps can be defined for a number of quite different logics of interest, including equational logic, Horn logic with equality, linear logic, logics with quantifiers, and any sequent calculus presentation of a logic for a very general notion of "sequent," is discussed in detail. Using the fact that rewriting logic is reflective, it is often possible to reify inside rewriting logic itself a representation map L ! RWLogic for the finitely presentable theories of L. Such a reification takes the form of a map between the abstract data types representing the finitary theories of...
Terminological Reasoning is Inherently Intractable
 ARTIFICIAL INTELLIGENCE
, 1990
"... Computational tractability has been a major concern in the area of terminological knowledge representation and reasoning. However, all analyses of the computational complexity of terminological reasoning are based on the hidden assumption that subsumption in terminologies reduces to subsumption of c ..."
Abstract

Cited by 147 (11 self)
 Add to MetaCart
Computational tractability has been a major concern in the area of terminological knowledge representation and reasoning. However, all analyses of the computational complexity of terminological reasoning are based on the hidden assumption that subsumption in terminologies reduces to subsumption of concept descriptions without a significant increase in computational complexity. In this paper it will be shown that this assumption, which seems to work in the "normal case," is nevertheless wrong. Subsumption in terminologies turns out to be coNPcomplete for a minimal terminological representation language that is a subset of every useful terminological language.
Type Inference with Polymorphic Recursion
 Transactions on Programming Languages and Systems
, 1991
"... The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. H ..."
Abstract

Cited by 135 (0 self)
 Add to MetaCart
The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. He proved the resulting type system, which we call the MilnerMycroft Calculus, sound with respect to Milner’s semantics, and showed that it preserves the principal typing property of the DamasMilner Calculus. The extension is of practical significance in typed logic programming languages and, more generally, in any language with (mutually) recursive definitions. In this paper we show that the type inference problem for the MilnerMycroft Calculus is logspace equivalent to semiunification, the problem of solving subsumption inequations between firstorder terms. This result has been proved independently by Kfoury et al. In connection with the recently established undecidability of semiunification this implies that typability in the MilnerMycroft Calculus is undecidable. We present some reasons why type inference with polymorphic recursion appears to be practical despite its undecidability. This also sheds some light on the observed practicality of ML
Probabilistic Logic Programming
, 1992
"... Of all scientific investigations into reasoning with uncertainty and chance, probability theory is perhaps the best understood paradigm. Nevertheless, all studies conducted thus far into the semantics of quantitative logic programming (cf. van Emden [51], Fitting [18, 19, 20], Blair and Subrahmanian ..."
Abstract

Cited by 131 (7 self)
 Add to MetaCart
Of all scientific investigations into reasoning with uncertainty and chance, probability theory is perhaps the best understood paradigm. Nevertheless, all studies conducted thus far into the semantics of quantitative logic programming (cf. van Emden [51], Fitting [18, 19, 20], Blair and Subrahmanian [5, 6, 49, 50], Kifer et al [29, 30, 31]) have restricted themselves to nonprobabilistic semantical characterizations. In this paper, we take a few steps towards rectifying this situation. We define a logic programming language that is syntactically similar to the annotated logics of [5, 6], but in which the truth values are interpreted probabilistically. A probabilistic model theory and fixpoint theory is developed for such programs. This probabilistic model theory satisfies the requirements proposed by Fenstad [16] for a function to be called probabilistic. The logical treatment of probabilities is complicated by two facts: first, that the connectives cannot be interpreted truth function...