Results 1  10
of
143
The Foundation of a Generic Theorem Prover
 Journal of Automated Reasoning
, 1989
"... Isabelle [28, 30] is an interactive theorem prover that supports a variety of logics. It represents rules as propositions (not as functions) and builds proofs by combining rules. These operations constitute a metalogic (or `logical framework') in which the objectlogics are formalized. Isabell ..."
Abstract

Cited by 471 (49 self)
 Add to MetaCart
(Show Context)
Isabelle [28, 30] is an interactive theorem prover that supports a variety of logics. It represents rules as propositions (not as functions) and builds proofs by combining rules. These operations constitute a metalogic (or `logical framework') in which the objectlogics are formalized. Isabelle is now based on higherorder logic  a precise and wellunderstood foundation. Examples illustrate use of this metalogic to formalize logics and proofs. Axioms for firstorder logic are shown sound and complete. Backwards proof is formalized by metareasoning about objectlevel entailment. Higherorder logic has several practical advantages over other metalogics. Many proof techniques are known, such as Huet's higherorder unification procedure. Key words: higherorder logic, higherorder unification, Isabelle, LCF, logical frameworks, metareasoning, natural deduction Contents 1 History and overview 2 2 The metalogic M 4 2.1 Syntax of the metalogic ......................... 4 2.2 ...
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. ..."
Abstract

Cited by 238 (49 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
A Modal Analysis of Staged Computation
 JOURNAL OF THE ACM
, 1996
"... We show that a type system based on the intuitionistic modal logic S4 provides an expressive framework for specifying and analyzing computation stages in the context of functional languages. Our main technical result is a conservative embedding of Nielson & Nielson's twolevel functional la ..."
Abstract

Cited by 213 (23 self)
 Add to MetaCart
We show that a type system based on the intuitionistic modal logic S4 provides an expressive framework for specifying and analyzing computation stages in the context of functional languages. Our main technical result is a conservative embedding of Nielson & Nielson's twolevel functional language in our language MiniML, which in
A Judgmental Reconstruction of Modal Logic
 Mathematical Structures in Computer Science
, 1999
"... this paper we reconsider the foundations of modal logic, following MartinL of's methodology of distinguishing judgments from propositions [ML85]. We give constructive meaning explanations for necessity (2) and possibility (3). This exercise yields a simple and uniform system of natural deductio ..."
Abstract

Cited by 194 (47 self)
 Add to MetaCart
(Show Context)
this paper we reconsider the foundations of modal logic, following MartinL of's methodology of distinguishing judgments from propositions [ML85]. We give constructive meaning explanations for necessity (2) and possibility (3). This exercise yields a simple and uniform system of natural deduction for intuitionistic modal logic which does not exhibit anomalies found in other proposals. We also give a new presentation of lax logic [FM97] and find that it is already contained in modal logic, using the decomposition of the lax modality fl A as
Using Typed Lambda Calculus to Implement Formal Systems on a Machine
 Journal of Automated Reasoning
, 1992
"... this paper and the LF. In particular the idea of having an operator T : Prop ! Type appears already in De Bruijn's earlier work, as does the idea of having several judgements. The paper [24] describes the basic features of the LF. In this paper we are going to provide a broader illustration of ..."
Abstract

Cited by 92 (16 self)
 Add to MetaCart
(Show Context)
this paper and the LF. In particular the idea of having an operator T : Prop ! Type appears already in De Bruijn's earlier work, as does the idea of having several judgements. The paper [24] describes the basic features of the LF. In this paper we are going to provide a broader illustration of its applicability and discuss to what extent it is successful. The analysis (of the formal presentation) of a system carried out through encoding often illuminates the system itself. This paper will also deal with this phenomenon.
A concurrent logical framework I: Judgments and properties
, 2003
"... The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous con ..."
Abstract

Cited by 86 (28 self)
 Add to MetaCart
(Show Context)
The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives# of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives #, & and #.
Polymorphism and Separation in Hoare Type Theory
, 2006
"... In previous work, we proposed a Hoare Type Theory (HTT) which combines effectful higherorder functions, dependent types and Hoare Logic specifications into a unified framework. However, the framework did not support polymorphism, and failed to provide a modular treatment of state in specifications. ..."
Abstract

Cited by 84 (15 self)
 Add to MetaCart
(Show Context)
In previous work, we proposed a Hoare Type Theory (HTT) which combines effectful higherorder functions, dependent types and Hoare Logic specifications into a unified framework. However, the framework did not support polymorphism, and failed to provide a modular treatment of state in specifications. In this paper, we address these shortcomings by showing that the addition of polymorphism alone is sufficient for capturing modular state specifications in the style of Separation Logic. Furthermore, we argue that polymorphism is an essential ingredient of the extension, as the treatment of higherorder functions requires operations not encodable via the spatial connectives of Separation Logic.
Natural Deduction as HigherOrder Resolution
 Journal of Logic Programming
, 1986
"... An interactive theorem prover, Isabelle, is under development. In LCF, each inference rule is represented by one function for forwards proof and another (a tactic) for backwards proof. In Isabelle, each inference rule is represented by a Horn clause. ..."
Abstract

Cited by 61 (11 self)
 Add to MetaCart
(Show Context)
An interactive theorem prover, Isabelle, is under development. In LCF, each inference rule is represented by one function for forwards proof and another (a tactic) for backwards proof. In Isabelle, each inference rule is represented by a Horn clause.
A Judgmental Analysis of Linear Logic
, 2003
"... We reexamine the foundations of linear logic, developing a system of natural deduction following MartinL of's separation of judgments from propositions. Our construction yields a clean and elegant formulation that accounts for a rich set of multiplicative, additive, and exponential connectives ..."
Abstract

Cited by 61 (33 self)
 Add to MetaCart
(Show Context)
We reexamine the foundations of linear logic, developing a system of natural deduction following MartinL of's separation of judgments from propositions. Our construction yields a clean and elegant formulation that accounts for a rich set of multiplicative, additive, and exponential connectives, extending dual intuitionistic linear logic but differing from both classical linear logic and Hyland and de Paiva's full intuitionistic linear logic. We also provide a corresponding sequent calculus that admits a simple proof of the admissibility of cut by a single structural induction. Finally, we show how to interpret classical linear logic (with or without the MIX rule) in our system, employing a form of doublenegation translation.