Results 1 
7 of
7
Fast Meldable Priority Queues
, 1995
"... We present priority queues that support the operations MakeQueue, FindMin, Insert and Meld in worst case time O(1) and Delete and DeleteMin in worst case time O(log n). They can be implemented on the pointer machine and require linear space. The time bounds are optimal for all implementations wh ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
We present priority queues that support the operations MakeQueue, FindMin, Insert and Meld in worst case time O(1) and Delete and DeleteMin in worst case time O(log n). They can be implemented on the pointer machine and require linear space. The time bounds are optimal for all implementations where Meld takes worst case time o(n).
Two new methods for transforming priority queues into doubleended priority queues
 CPH STL Report
, 2006
"... Abstract. Two new ways of transforming a priority queue into a doubleended priority queue are introduced. These methods can be used to improve all known bounds for the comparison complexity of doubleended priorityqueue operations. Using an efficient priority queue, the first transformation can pr ..."
Abstract

Cited by 5 (5 self)
 Add to MetaCart
Abstract. Two new ways of transforming a priority queue into a doubleended priority queue are introduced. These methods can be used to improve all known bounds for the comparison complexity of doubleended priorityqueue operations. Using an efficient priority queue, the first transformation can produce a doubleended priority queue which guarantees the worstcase cost of O(1) for findmin, findmax, and insert; and the worstcase cost of O(lg n) including at most lg n + O(1) element comparisons for delete, but the data structure cannot support meld efficiently. Using a meldable priority queue that supports decrease efficiently, the second transformation can produce a meldable doubleended priority queue which guarantees the worstcase cost of O(1) for findmin, findmax, and insert; the worstcase cost of O(lg n) including at most lg n + O(lg lg n) element comparisons for delete; and the worstcase cost of O(min {lg m, lg n}) for meld. Here, m and n denote the number of elements stored in the data structures prior to the operation in question, and lg n is a shorthand for log 2 (max {2, n}). 1.
Thin Heaps, Thick Heaps
, 2006
"... The Fibonacci heap was devised to provide an especially efficient implementation of Dijkstra’s shortest path algorithm. Although asyptotically efficient, it is not as fast in practice as other heap implementations. Expanding on ideas of Høyer, we describe three heap implementations (two versions of ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
The Fibonacci heap was devised to provide an especially efficient implementation of Dijkstra’s shortest path algorithm. Although asyptotically efficient, it is not as fast in practice as other heap implementations. Expanding on ideas of Høyer, we describe three heap implementations (two versions of thin heaps and one of thick heaps) that have the same amortized efficiency as Fibonacci heaps but need less space and promise better practical performance. As part of our development, we fill in a gap in Høyer’s analysis.
Violation heaps: A better substitute for Fibonacci heaps
, 812
"... We give a priority queue that achieves the same amortized bounds as Fibonacci heaps. Namely, findmin requires O(1) worstcase time, insert, meld and decreasekey require O(1) amortized time, and deletemin requires O(log n) amortized time. Our structure is simple and promises a more efficient pract ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We give a priority queue that achieves the same amortized bounds as Fibonacci heaps. Namely, findmin requires O(1) worstcase time, insert, meld and decreasekey require O(1) amortized time, and deletemin requires O(log n) amortized time. Our structure is simple and promises a more efficient practical behavior compared to any other known Fibonaccilike heap. 1
Reflected MinMax Heaps
 Information Processing Letters 86
, 2003
"... In this paper we present a simple and e#cient implementation of a minmax priority queue, reflected minmax priority queues. The main merits of our construction are threefold. First, the space utilization of the reflected minmax heaps is much better than the naive solution of putting two heaps b ..."
Abstract
 Add to MetaCart
In this paper we present a simple and e#cient implementation of a minmax priority queue, reflected minmax priority queues. The main merits of our construction are threefold. First, the space utilization of the reflected minmax heaps is much better than the naive solution of putting two heaps backtoback. Second, the methods applied in this structure can be easily used to transform ordinary priority queues into minmax priority queues. Third, when considering only the setting of minmax priority queues, we support merging in constant worstcase time which is a clear improvement over the best worstcase bounds achieved by Hyer.
RankPairing Heaps
"... Abstract. We introduce the rankpairing heap, a heap (priority queue) implementation that combines the asymptotic efficiency of Fibonacci heaps with much of the simplicity of pairing heaps. Unlike all other heap implementations that match the bounds of Fibonacci heaps, our structure needs only one c ..."
Abstract
 Add to MetaCart
Abstract. We introduce the rankpairing heap, a heap (priority queue) implementation that combines the asymptotic efficiency of Fibonacci heaps with much of the simplicity of pairing heaps. Unlike all other heap implementations that match the bounds of Fibonacci heaps, our structure needs only one cut and no other structural changes per key decrease; the trees representing the heap can evolve to have arbitrary structure. Our initial experiments indicate that rankpairing heaps perform almost as well as pairing heaps on typical input sequences and better on worstcase sequences. 1
Strict Fibonacci Heaps
"... Wepresentthefirstpointerbasedheapimplementationwith time bounds matching those of Fibonacci heaps in the worst case. We support makeheap, insert, findmin, meld and decreasekey in worstcase O(1) time, and delete and deletemin in worstcase O(lgn) time, where n is the size of the heap. The data s ..."
Abstract
 Add to MetaCart
Wepresentthefirstpointerbasedheapimplementationwith time bounds matching those of Fibonacci heaps in the worst case. We support makeheap, insert, findmin, meld and decreasekey in worstcase O(1) time, and delete and deletemin in worstcase O(lgn) time, where n is the size of the heap. The data structure uses linear space. A previous, very complicated, solution achieving the same time bounds in the RAM model made essential use of arrays and extensive use of redundant counter schemes to maintain balance. Our solution uses neither. Our key simplification is to discard the structure of the smaller heap when doing a meld. We use the pigeonhole principle in place of the redundant counter mechanism.