Results 11  20
of
231
Some Connections between Bounded Query Classes and NonUniform Complexity
 In Proceedings of the 5th Structure in Complexity Theory Conference
, 1990
"... This paper is dedicated to the memory of Ronald V. Book, 19371997. ..."
Abstract

Cited by 71 (23 self)
 Add to MetaCart
This paper is dedicated to the memory of Ronald V. Book, 19371997.
The Polynomial Method in Circuit Complexity
 In Proceedings of the 8th IEEE Structure in Complexity Theory Conference
, 1993
"... The representation of functions as lowdegree polynomials over various rings has provided many insights in the theory of smalldepth circuits. We survey some of the closure properties, upper bounds, and lower bounds obtained via this approach. 1. Introduction There is a long history of using polyno ..."
Abstract

Cited by 70 (4 self)
 Add to MetaCart
The representation of functions as lowdegree polynomials over various rings has provided many insights in the theory of smalldepth circuits. We survey some of the closure properties, upper bounds, and lower bounds obtained via this approach. 1. Introduction There is a long history of using polynomials in order to prove complexity bounds. Minsky and Papert [39] used polynomials to prove early lower bounds on the order of perceptrons. Razborov [46] and Smolensky [49] used them to prove lower bounds on the size of ANDOR circuits. Other lower bounds via polynomials are due to [50, 4, 10, 51, 9, 55]. Paturi and Saks [44] discovered that rational functions could be used for lower bounds on the size of threshold circuits. Toda [53] used polynomials to prove upper bounds on the power of the polynomial hierarchy. This led to a series of upper bounds on the power of the polynomial hierarchy [54, 52], AC 0 [2, 3, 52, 19], and ACC [58, 20, 30, 37], and related classes [21, 42]. Beigel and Gi...
Satisfiability Coding Lemma
 In Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, FOCS’97
, 1997
"... We present and analyze two simple algorithms for finding satisfying assignments of kCNFs (Boolean formulae in conjunctive normal form with at most k literals per clause). The first is a randomized algorithm which, with probability approaching 1, finds a satisfying assignment of a satisfiable kCNF ..."
Abstract

Cited by 64 (6 self)
 Add to MetaCart
We present and analyze two simple algorithms for finding satisfying assignments of kCNFs (Boolean formulae in conjunctive normal form with at most k literals per clause). The first is a randomized algorithm which, with probability approaching 1, finds a satisfying assignment of a satisfiable kCNF formula F in time O(n 2 jF j2 n\Gamman=k ). The second algorithm is deterministic, and its running time approaches 2 n\Gamman=2k for large n and k. The randomized algorithm is the best known algorithm for k ? 3; the deterministic algorithm is the best known deterministic algorithm for k ? 4. We also show an \Omega\Gamma n 1=4 2 p n ) lower bound on the size of depth 3 circuits of AND and OR gates computing the parity function. This bound is tight up to a constant factor. The key idea used in these upper and lower bounds is what we call the Satisfiability Coding Lemma. This basic lemma shows how to encode satisfying solutions of a kCNF succinctly. 1 Introduction The problem of ...
Counting Classes: Thresholds, Parity, Mods, and Fewness
, 1996
"... Counting classes consist of languages defined in terms of the number of accepting computations of nondeterministic polynomialtime Turing machines. Well known examples of counting classes are NP, coNP, \PhiP, and PP. Every counting class is a subset of P #P[1] , the class of languages computable ..."
Abstract

Cited by 61 (13 self)
 Add to MetaCart
Counting classes consist of languages defined in terms of the number of accepting computations of nondeterministic polynomialtime Turing machines. Well known examples of counting classes are NP, coNP, \PhiP, and PP. Every counting class is a subset of P #P[1] , the class of languages computable in polynomial time using a single call to an oracle capable of determining the number of accepting paths of an NP machine. Using closure properties of #P, we systematically develop a complexity theory for counting classes defined in terms of thresholds and moduli. An unexpected result is that MOD k iP = MOD k P for prime k. Finally, we improve a result of Cai and Hemachandra by showing that recognizing languages in the class Few is as easy as distinguishing uniquely satisfiable formulas from unsatisfiable formulas (or detecting unique solutions, as in [28]). 1. Introduction Valiant [27] defined the class #P of functions whose values equal the number of accepting paths of polynomialtime bo...
Representing Boolean Functions As Polynomials Modulo Composite Numbers
 Computational Complexity
, 1994
"... . Define the MODm degree of a boolean function F to be the smallest degree of any polynomial P , over the ring of integers modulo m, such that for all 01 assignments ~x, F (~x) = 0 iff P (~x) = 0. We obtain the unexpected result that the MODm degree of the OR of N variables is O( r p N ), wher ..."
Abstract

Cited by 56 (6 self)
 Add to MetaCart
. Define the MODm degree of a boolean function F to be the smallest degree of any polynomial P , over the ring of integers modulo m, such that for all 01 assignments ~x, F (~x) = 0 iff P (~x) = 0. We obtain the unexpected result that the MODm degree of the OR of N variables is O( r p N ), where r is the number of distinct prime factors of m. This is optimal in the case of representation by symmetric polynomials. The MOD n function is 0 if the number of input ones is a multiple of n and is one otherwise. We show that the MODm degree of both the MOD n and :MOD n functions is N\Omega\Gamma1/ exactly when there is a prime dividing n but not m. The MODm degree of the MODm function is 1; we show that the MODm degree of :MODm is N\Omega\Gamma30 if m is not a power of a prime, O(1) otherwise. A corollary is that there exists an oracle relative to which the MODmP classes (such as \PhiP) have this structure: MODmP is closed under complementation and union iff m is a prime power, and...
Unprovability of Lower Bounds on the Circuit Size in Certain Fragments of Bounded Arithmetic
 in Izvestiya of the Russian Academy of Science, mathematics
, 1995
"... To appear in Izvestiya of the RAN We show that if strong pseudorandom generators exist then the statement “α encodes a circuit of size n (log ∗ n) for SATISFIABILITY ” is not refutable in S2 2 (α). For refutation in S1 2 (α), this is proven under the weaker assumption of the existence of generators ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
To appear in Izvestiya of the RAN We show that if strong pseudorandom generators exist then the statement “α encodes a circuit of size n (log ∗ n) for SATISFIABILITY ” is not refutable in S2 2 (α). For refutation in S1 2 (α), this is proven under the weaker assumption of the existence of generators secure against the attack by small depth circuits, and for another system which is strong enough to prove exponential lower bounds for constantdepth circuits, this is shown without using any unproven hardness assumptions. These results can be also viewed as direct corollaries of interpolationlike theorems for certain “split versions ” of classical systems of Bounded Arithmetic introduced in this paper.
Lower Bounds to the Size of ConstantDepth Propositional Proofs
, 1994
"... 1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp ..."
Abstract

Cited by 53 (6 self)
 Add to MetaCart
1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp(O(log 2 n)) but such that every depth d refutation must have the size at least exp(n\Omega\Gamma21 ). The sets T d n express a weaker form of the pigeonhole principle. It is a fundamental problem of mathematical logic and complexity theory whether there exists a proof system for propositional logic in which every tautology has a short proof, where the length (equivalently the size) of a proof is measured essentially by the total number of symbols in it and short means polynomial in the length of the tautology. Equivalently one can ask whether for every theory T there is another theory S (both first order and reasonably axiomatized, e.g. by schemes) having the property that if a statement...
The History and Status of the P versus NP Question
, 1992
"... this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the re ..."
Abstract

Cited by 50 (0 self)
 Add to MetaCart
this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the realization that certain problems are algorithmically unsolvable. At around this time, forerunners of the programmable computing machine were beginning to appear. As mathematicians contemplated the practical capabilities and limitations of such devices, computational complexity theory emerged from the theory of algorithmic unsolvability. Early on, a particular type of computational task became evident, where one is seeking an object which lies
Lower Bounds For The Polynomial Calculus
, 1998
"... We show that polynomial calculus proofs (sometimes also called Groebner proofs) of the pigeonhole principle PHP n must have degree at least (n=2)+1 over any field. This is the first nontrivial lower bound on the degree of polynomial calculus proofs obtained without using unproved complexity assumpt ..."
Abstract

Cited by 49 (5 self)
 Add to MetaCart
We show that polynomial calculus proofs (sometimes also called Groebner proofs) of the pigeonhole principle PHP n must have degree at least (n=2)+1 over any field. This is the first nontrivial lower bound on the degree of polynomial calculus proofs obtained without using unproved complexity assumptions. We also show that for some modifications of PHP n , expressible by polynomials of at most logarithmic degree, our bound can be improved to linear in the number of variables. Finally, we show that for any Boolean function f n in n variables, every polynomial calculus proof of the statement "f n cannot be computed by any circuit of size t," must have degree t=n). Loosely speaking, this means that low degree polynomial calculus proofs do not prove NP 6 P=poly.