Results 1 
1 of
1
Reductions of an elliptic curve with almost prime orders
"... 1 Let E be an elliptic curve over Q. For a prime p of good reduction, let Ep be the reduction of E modulo p. We investigate Koblitz’s Conjecture about the number of primes p for which Ep(Fp) has prime order. More precisely, our main result is that if E is with Complex Multiplication, then there exis ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
1 Let E be an elliptic curve over Q. For a prime p of good reduction, let Ep be the reduction of E modulo p. We investigate Koblitz’s Conjecture about the number of primes p for which Ep(Fp) has prime order. More precisely, our main result is that if E is with Complex Multiplication, then there exist infinitely many primes p for which #Ep(Fp) has at most 5 prime factors. We also obtain upper bounds for the number of primes p ≤ x for which #Ep(Fp) is a prime. 1