Results 1  10
of
128
Splines: A Perfect Fit for Signal/Image Processing
 IEEE SIGNAL PROCESSING MAGAZINE
, 1999
"... ..."
Sampling—50 years after Shannon
 Proceedings of the IEEE
, 2000
"... This paper presents an account of the current state of sampling, 50 years after Shannon’s formulation of the sampling theorem. The emphasis is on regular sampling, where the grid is uniform. This topic has benefited from a strong research revival during the past few years, thanks in part to the math ..."
Abstract

Cited by 207 (22 self)
 Add to MetaCart
This paper presents an account of the current state of sampling, 50 years after Shannon’s formulation of the sampling theorem. The emphasis is on regular sampling, where the grid is uniform. This topic has benefited from a strong research revival during the past few years, thanks in part to the mathematical connections that were made with wavelet theory. To introduce the reader to the modern, Hilbertspace formulation, we reinterpret Shannon’s sampling procedure as an orthogonal projection onto the subspace of bandlimited functions. We then extend the standard sampling paradigm for a representation of functions in the more general class of “shiftinvariant” functions spaces, including splines and wavelets. Practically, this allows for simpler—and possibly more realistic—interpolation models, which can be used in conjunction with a much wider class of (antialiasing) prefilters that are not necessarily ideal lowpass. We summarize and discuss the results available for the determination of the approximation error and of the sampling rate when the input of the system is essentially arbitrary; e.g., nonbandlimited. We also review variations of sampling that can be understood from the same unifying perspective. These include wavelets, multiwavelets, Papoulis generalized sampling, finite elements, and frames. Irregular sampling and radial basis functions are briefly mentioned. Keywords—Bandlimited functions, Hilbert spaces, interpolation, least squares approximation, projection operators, sampling,
Approximation From ShiftInvariant Subspaces of ...
 Trans. Amer. Math. Soc
, 1991
"... : A complete characterization is given of closed shiftinvariant subspaces of L 2 (IR d ) which provide a specified approximation order. When such a space is principal (i.e., generated by a single function), then this characterization is in terms of the Fourier transform of the generator. As a spe ..."
Abstract

Cited by 130 (38 self)
 Add to MetaCart
: A complete characterization is given of closed shiftinvariant subspaces of L 2 (IR d ) which provide a specified approximation order. When such a space is principal (i.e., generated by a single function), then this characterization is in terms of the Fourier transform of the generator. As a special case, we obtain the classical StrangFix conditions, but without requiring the generating function to decay at infinity. The approximation order of a general closed shiftinvariant space is shown to be already realized by a specifiable principal subspace. AMS (MOS) Subject Classifications: 41A25, 41A63; 41A30, 41A15, 42B99, 46E30 Key Words and phrases: approximation order, StrangFix conditions, shiftinvariant spaces, radial basis functions, orthogonal projection. Authors' affiliation and address: 1 Center for Mathematical Sciences University of WisconsinMadison 610 Walnut St. Madison WI 53705 and 2 Department of Mathematics University of South Carolina Columbia SC 29208 This work...
Interpolation revisited
 IEEE Transactions on Medical Imaging
, 2000
"... Abstract—Based on the theory of approximation, this paper presents a unified analysis of interpolation and resampling techniques. An important issue is the choice of adequate basis functions. We show that, contrary to the common belief, those that perform best are not interpolating. By opposition to ..."
Abstract

Cited by 118 (23 self)
 Add to MetaCart
Abstract—Based on the theory of approximation, this paper presents a unified analysis of interpolation and resampling techniques. An important issue is the choice of adequate basis functions. We show that, contrary to the common belief, those that perform best are not interpolating. By opposition to traditional interpolation, we call their use generalized interpolation; they involve a prefiltering step when correctly applied. We explain why the approximation order inherent in any basis function is important to limit interpolation artifacts. The decomposition theorem states that any basis function endowed with approximation order can be expressed as the convolution of a Bspline of the same order with another function that has none. This motivates the use of splines and splinebased functions as a tunable way to keep artifacts in check without any significant cost penalty. We discuss implementation and performance issues, and we provide experimental evidence to support our claims. Index Terms—Approximation constant, approximation order, Bsplines, Fourier error kernel, maximal order and minimal support (Moms), piecewisepolynomials. I.
The Structure of Finitely Generated ShiftInvariant Spaces in ...
, 1992
"... : A simple characterization is given of finitely generated subspaces of L 2 (IR d ) which are invariant under translation by any (multi)integer, and used to give conditions under which such a space has a particularly nice generating set, namely a basis, and, more than that, a basis with desirable ..."
Abstract

Cited by 101 (21 self)
 Add to MetaCart
: A simple characterization is given of finitely generated subspaces of L 2 (IR d ) which are invariant under translation by any (multi)integer, and used to give conditions under which such a space has a particularly nice generating set, namely a basis, and, more than that, a basis with desirable properties, such as stability, orthogonality, or linear independence. The last property makes sense only for `local' spaces, i.e., shiftinvariant spaces generated by finitely many compactly supported functions, and special attention is paid to such spaces. As an application, we prove that the approximation order provided by a given local space is already provided by the shiftinvariant space generated by just one function, with this function constructible as a finite linear combination of the finite generating set for the whole space, hence compactly supported. This settles a question of some 20 years' standing. AMS (MOS) Subject Classifications: primary: 41A25, 41A63, 46C99; secondary: 4...
Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets StrangFix
 IEEE Trans. on Signal Processing
, 2007
"... Abstract—Consider the problem of sampling signals which are not bandlimited, but still have a finite number of degrees of freedom per unit of time, such as, for example, nonuniform splines or piecewise polynomials, and call the number of degrees of freedom per unit of time the rate of innovation. Cl ..."
Abstract

Cited by 92 (27 self)
 Add to MetaCart
Abstract—Consider the problem of sampling signals which are not bandlimited, but still have a finite number of degrees of freedom per unit of time, such as, for example, nonuniform splines or piecewise polynomials, and call the number of degrees of freedom per unit of time the rate of innovation. Classical sampling theory does not enable a perfect reconstruction of such signals since they are not bandlimited. Recently, it was shown that, by using an adequate sampling kernel and a sampling rate greater or equal to the rate of innovation, it is possible to reconstruct such signals uniquely [34]. These sampling schemes, however, use kernels with infinite support, and this leads to complex and potentially unstable reconstruction algorithms. In this paper, we show that many signals with a finite rate of innovation can be sampled and perfectly reconstructed using physically realizable kernels of compact support and a local reconstruction algorithm. The class of kernels that we can use is very rich and includes functions satisfying Strang–Fix conditions, exponential splines and functions with rational Fourier transform. This last class of kernels is quite general and includes, for instance, any linear electric circuit. We, thus, show with an example how to estimate a signal of finite rate of innovation at the output of an circuit. The case of noisy measurements is also analyzed, and we present a novel algorithm that reduces the effect of noise by oversampling. Index Terms—Analogtodigital conversion, annihilating filter method, multiresolution approximations, sampling methods, splines, wavelets. I.
Optimization of Mutual Information for Multiresolution Image Registration
 IEEE Transactions on Image Processing
, 2000
"... We propose a new method for the intermodal registration of images using a criterion known as mutual information. Our main contribution is an optimizer that we specifically designed for this criterion. We show that this new optimizer is well adapted to a multiresolution approach because it typically ..."
Abstract

Cited by 85 (3 self)
 Add to MetaCart
We propose a new method for the intermodal registration of images using a criterion known as mutual information. Our main contribution is an optimizer that we specifically designed for this criterion. We show that this new optimizer is well adapted to a multiresolution approach because it typically converges in fewer criterion evaluations than other optimizers. We have built a multiresolution image pyramid, along with an interpolation process, an optimizer, and the criterion itself, around the unifying concept of splineprocessing. This ensures coherence in the way we model data and yields good performance. We have tested our approach in a variety of experimental conditions and report excellent results. We claim an accuracy of about a hundredth of a pixel under ideal conditions. We are also robust since the accuracy is still about a tenth of a pixel under very noisy conditions. In addition, a blind evaluation of our results compares very favorably to the work of several other researchers.
Quantitative Fourier Analysis of Approximation Techniques: Part II  Wavelets
 IEEE Trans. Signal Processing
, 1999
"... In a previous paper, we proposed a general Fourier method that provides an accurate prediction of the approximation error, irrespective of the scaling properties of the approximating functions. Here, we apply our results when these functions satisfy the usual twoscale relation encountered in dyadic ..."
Abstract

Cited by 63 (28 self)
 Add to MetaCart
In a previous paper, we proposed a general Fourier method that provides an accurate prediction of the approximation error, irrespective of the scaling properties of the approximating functions. Here, we apply our results when these functions satisfy the usual twoscale relation encountered in dyadic multiresolution analysis. As a consequence of this additional constraint, the quantities introduced in our previous paper can be computed explicitly as a function of the refinement filter. This is, in particular, true for the asymptotic expansion of the approximation error for biorthonormal wavelets as the scale tends to zero. One of the contributions of this paper is the computation of sharp, asymptotically optimal upper bounds for the leastsquares approximation error. Another contribution is the application of these results to Bsplines and Daubechies scaling functions, which yields explicit asymptotic developments and upper bounds. Thanks to these explicit expressions, we can quantify ...