Results 1  10
of
394
A Bayesian method for the induction of probabilistic networks from data
 Machine Learning
, 1992
"... Abstract. This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of ..."
Abstract

Cited by 1095 (26 self)
 Add to MetaCart
Abstract. This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabilistic expert systems. We extend the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary evaluation of an algorithm for constructing a belief network from a database of cases. Finally, we relate the methods in this paper to previous work, and we discuss open problems.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 579 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 426 (4 self)
 Add to MetaCart
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDPrelated methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to de...
A Tutorial on Learning Bayesian Networks
 Communications of the ACM
, 1995
"... We examine a graphical representation of uncertain knowledge called a Bayesian network. The representation is easy to construct and interpret, yet has formal probabilistic semantics making it suitable for statistical manipulation. We show how we can use the representation to learn new knowledge by c ..."
Abstract

Cited by 306 (12 self)
 Add to MetaCart
We examine a graphical representation of uncertain knowledge called a Bayesian network. The representation is easy to construct and interpret, yet has formal probabilistic semantics making it suitable for statistical manipulation. We show how we can use the representation to learn new knowledge by combining domain knowledge with statistical data. 1 Introduction Many techniques for learning rely heavily on data. In contrast, the knowledge encoded in expert systems usually comes solely from an expert. In this paper, we examine a knowledge representation, called a Bayesian network, that lets us have the best of both worlds. Namely, the representation allows us to learn new knowledge by combining expert domain knowledge and statistical data. A Bayesian network is a graphical representation of uncertain knowledge that most people find easy to construct and interpret. In addition, the representation has formal probabilistic semantics, making it suitable for statistical manipulation (Howard,...
Bucket Elimination: A Unifying Framework for Reasoning
"... Bucket elimination is an algorithmic framework that generalizes dynamic programming to accommodate many problemsolving and reasoning tasks. Algorithms such as directionalresolution for propositional satisfiability, adaptiveconsistency for constraint satisfaction, Fourier and Gaussian elimination ..."
Abstract

Cited by 272 (60 self)
 Add to MetaCart
Bucket elimination is an algorithmic framework that generalizes dynamic programming to accommodate many problemsolving and reasoning tasks. Algorithms such as directionalresolution for propositional satisfiability, adaptiveconsistency for constraint satisfaction, Fourier and Gaussian elimination for solving linear equalities and inequalities, and dynamic programming for combinatorial optimization, can all be accommodated within the bucket elimination framework. Many probabilistic inference tasks can likewise be expressed as bucketelimination algorithms. These include: belief updating, finding the most probable explanation, and expected utility maximization. These algorithms share the same performance guarantees; all are time and space exponential in the inducedwidth of the problem's interaction graph. While elimination strategies have extensive demands on memory, a contrasting class of algorithms called "conditioning search" require only linear space. Algorithms in this class split a problem into subproblems by instantiating a subset of variables, called a conditioning set, or a cutset. Typical examples of conditioning search algorithms are: backtracking (in constraint satisfaction), and branch and bound (for combinatorial optimization). The paper presents the bucketelimination framework as a unifying theme across probabilistic and deterministic reasoning tasks and show how conditioning search can be augmented to systematically trade space for time.
Operations for Learning with Graphical Models
 Journal of Artificial Intelligence Research
, 1994
"... This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models ..."
Abstract

Cited by 252 (12 self)
 Add to MetaCart
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feedforward networks, and learning Gaussian and discrete Bayesian networks from data. The paper conclu...
Reasoning about Beliefs and Actions under Computational Resource Constraints
 In Proceedings of the 1987 Workshop on Uncertainty in Artificial Intelligence
, 1987
"... ion Modulation In many cases, it may be more useful to do normative inference on a model that is deemed to be complete at a particular level of abstraction than it is to do an approximate or heuristic analysis of a model that is too large to be analyzed under specific resource constraints. It may pr ..."
Abstract

Cited by 183 (18 self)
 Add to MetaCart
ion Modulation In many cases, it may be more useful to do normative inference on a model that is deemed to be complete at a particular level of abstraction than it is to do an approximate or heuristic analysis of a model that is too large to be analyzed under specific resource constraints. It may prove useful in many cases to store several beliefnetwork representations, each containing propositions at different levels of abstraction. In many domains, models at higher levels of abstraction are more tractable. As the time available for computation decreases, network modules of increasing abstraction can be employed. ffl Local Reformulation Local reformulation is the modification of specific troublesome topologies in a belief network. Approximation methods and heuristics designed to modify the microstructure of belief networks will undoubtedly be useful in the tractable solution of large uncertainreasoning problems. Such strategies might be best applied at knowledgeencoding time. An...
Planning Under Time Constraints in Stochastic Domains
 ARTIFICIAL INTELLIGENCE
, 1993
"... We provide a method, based on the theory of Markov decision processes, for efficient planning in stochastic domains. Goals are encoded as reward functions, expressing the desirability of each world state; the planner must find a policy (mapping from states to actions) that maximizes future reward ..."
Abstract

Cited by 165 (19 self)
 Add to MetaCart
We provide a method, based on the theory of Markov decision processes, for efficient planning in stochastic domains. Goals are encoded as reward functions, expressing the desirability of each world state; the planner must find a policy (mapping from states to actions) that maximizes future rewards. Standard goals of achievement, as well as goals of maintenance and prioritized combinations of goals, can be specified in this way. An optimal policy can be found using existing methods, but these methods require time at best polynomial in the number of states in the domain, where the number of states is exponential in the number of propositions (or state variables). By using information about the starting state, the reward function, and the transition probabilities of the domain, we restrict the planner's attention to a set of world states that are likely to be encountered in satisfying the goal. Using this restricted set of states, the planner can generate more or less complete ...
Multiagent influence diagrams for representing and solving games
 GAMES AND ECONOMIC BEHAVIOR
, 2001
"... The traditional representations of games using the extensive form or the strategic (normal) form obscure much of the structure that is present in realworld games. In this paper, we propose a new representation language for general multiplayer games — multiagent influence diagrams (MAIDs). This rep ..."
Abstract

Cited by 156 (2 self)
 Add to MetaCart
The traditional representations of games using the extensive form or the strategic (normal) form obscure much of the structure that is present in realworld games. In this paper, we propose a new representation language for general multiplayer games — multiagent influence diagrams (MAIDs). This representation extends graphical models for probability distributions to a multiagent decisionmaking context. MAIDs explicitly encode structure involving the dependence relationships among variables. As a consequence, we can define a notion of strategic relevance of one decision variable to another: ¢¡ is strategically relevant to if, to optimize the decision rule at, the decision maker needs to take into consideration the decision rule at ¡. We provide a sound and complete graphical criterion for determining strategic relevance. We then show how strategic relevance can be used to detect structure in games, allowing a large game to be broken up into a set of interacting smaller games, which can be solved in sequence. We show that this decomposition can lead to substantial savings in the computational cost of finding Nash equilibria in these games.