Results 1 
6 of
6
Computational Complexity and Induction for Partial Computable Functions in Type Theory
 In Preprint
, 1999
"... An adequate theory of partial computable functions should provide a basis for defining computational complexity measures and should justify the principle of computational induction for reasoning about programs on the basis of their recursive calls. There is no practical account of these notions in ..."
Abstract

Cited by 11 (7 self)
 Add to MetaCart
An adequate theory of partial computable functions should provide a basis for defining computational complexity measures and should justify the principle of computational induction for reasoning about programs on the basis of their recursive calls. There is no practical account of these notions in type theory, and consequently such concepts are not available in applications of type theory where they are greatly needed. It is also not clear how to provide a practical and adequate account in programming logics based on set theory. This paper provides a practical theory supporting all these concepts in the setting of constructive type theories. We first introduce an extensional theory of partial computable functions in type theory. We then add support for intensional reasoning about programs by explicitly reflecting the essential properties of the underlying computation system. We use the resulting intensional reasoning tools to justify computational induction and to define computationa...
Semantics vs. Syntax vs. Computations  Machine Models For Type2 . . .
 JOURNAL OF COMPUTER AND SYSTEM SCIENCE
, 1997
"... This paper investigates analogs of the KreiselLacombeShoenfield Theorem in the context of the type2 basic feasible functionals. We develop a direct, polynomialtime analog of effective operation in which the time boundingon computations is modeled after Kapron and Cook's scheme for their basic po ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
This paper investigates analogs of the KreiselLacombeShoenfield Theorem in the context of the type2 basic feasible functionals. We develop a direct, polynomialtime analog of effective operation in which the time boundingon computations is modeled after Kapron and Cook's scheme for their basic polynomialtime functionals. We show that if P = NP, these polynomialtime effective operations are strictly more powerful on R (the class of recursive functions) than the basic feasible functions. We also consider a weaker notion of polynomialtime effective operation where the machines computing these functionals have access to the computations of their procedural parameter, but not to its program text. For this version of polynomialtime effective operations, the analog of the KreiselLacombeShoenfield is shown to holdtheir power matches that of the basic feasible functionals on R.
Naïve computational type theory
 Proof and SystemReliability, Proceedings of International Summer School Marktoberdorf, July 24 to August 5, 2001, volume 62 of NATO Science Series III
, 2002
"... The basic concepts of type theory are fundamental to computer science, logic and mathematics. Indeed, the language of type theory connects these regions of science. It plays a role in computing and information science akin to that of set theory in pure mathematics. There are many excellent accounts ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
The basic concepts of type theory are fundamental to computer science, logic and mathematics. Indeed, the language of type theory connects these regions of science. It plays a role in computing and information science akin to that of set theory in pure mathematics. There are many excellent accounts of the basic ideas of type theory, especially at the interface of computer science and logic — specifically, in the literature of programming languages, semantics, formal methods and automated reasoning. Most of these are very technical, dense with formulas, inference rules, and computation rules. Here we follow the example of the mathematician Paul Halmos, who in 1960 wrote a 104page book called Naïve Set Theory intended to make the subject accessible to practicing mathematicians. His book served many generations well. This article follows the spirit of Halmos ’ book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos ’ book. The sections of this article follow his chapters closely. Every computer scientist agrees that every computer scientist must know some type theory; the disagreement begins in trying to decide how much is some. This article contains my partial answer to that question. The purpose of the article is to tell the beginning student of advanced computer science the basic type theoretic facts of life, and to do so with a minimum of philosophical discourse and logical formalism. The point throughout is that of a prospective computer scientist eager to study programming languages, or database systems, or computational complexity theory, or distributed systems or information discovery. In type theory, “naïve ” and “formal ” are contrasting words. The present treatment might best be described as informal type theory from a naïve point of view. The concepts are very general and very abstract; therefore they may
Naïve Type Theory
, 2002
"... This article follows the spirit of Halmos' book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos' book. The sections of this article follow his chapters closely. Every computer scientist ..."
Abstract
 Add to MetaCart
This article follows the spirit of Halmos' book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos' book. The sections of this article follow his chapters closely. Every computer scientist agrees that every computer scientist must know some type theory; the disagreement begins in trying to decide how much is some. This article contains my partial answer to that question. The purpose of the article is to tell the beginning student of advanced computer science the basic type theoretic facts of life, and to do so with a minimum of philosophical discourse and logical formalism. The point throughout is that of a prospective computer scientist eager to study programming languages, or database systems, or computational complexity theory, or distributed systems or information discovery
Author manuscript, published in "21st International Symposium on Algorithms and Computation ISAAC 2010 (2010)" Interpretation of stream programs: characterizing type 2 polynomial time complexity
, 2010
"... Abstract. We study polynomial time complexity of type 2 functionals. For that purpose, we introduce a first order functional stream language. We give criteria, named wellfounded, on such programs relying on second order interpretation that characterize two variants of type 2 polynomial complexity i ..."
Abstract
 Add to MetaCart
Abstract. We study polynomial time complexity of type 2 functionals. For that purpose, we introduce a first order functional stream language. We give criteria, named wellfounded, on such programs relying on second order interpretation that characterize two variants of type 2 polynomial complexity including the Basic Feasible Functions (BFF). These characterizations provide a new insight on the complexity of stream programs. Finally, we adapt these results to functions over the reals, a particular case of type 2 functions, and we provide a characterization of polynomial time complexity in Recursive Analysis. 1