Results 1 
5 of
5
Modular Lazy Search for Constraint Satisfaction Problems
 JOURNAL OF FUNCTIONAL PROGRAMMING
, 2001
"... We describe a unified, lazy, declarative framework for solving constraint satisfaction problems, an important subclass of combinatorial search problems. These problems are both practically significant and hard. Finding good solutions involves combining good generalpurpose search algorithms with p ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We describe a unified, lazy, declarative framework for solving constraint satisfaction problems, an important subclass of combinatorial search problems. These problems are both practically significant and hard. Finding good solutions involves combining good generalpurpose search algorithms with problemspecific heuristics. Conventional imperative algorithms are usually implemented and presented monolithically, which makes them hard to understand and reuse, even though new algorithms often are combinations of simpler ones. Lazy functional languages, such as Haskell, encourage modular structuring of search algorithms by separating the generation and testing of potential solutions into distinct functions communicating through an explicit, lazy intermediate data structure. But only relatively simple search algorithms have been treated in this way in the past. Our framework uses a generic generation and pruning algorithm parameterized by a labeling function that annotates search t...
Naïve computational type theory
 Proof and SystemReliability, Proceedings of International Summer School Marktoberdorf, July 24 to August 5, 2001, volume 62 of NATO Science Series III
, 2002
"... The basic concepts of type theory are fundamental to computer science, logic and mathematics. Indeed, the language of type theory connects these regions of science. It plays a role in computing and information science akin to that of set theory in pure mathematics. There are many excellent accounts ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
The basic concepts of type theory are fundamental to computer science, logic and mathematics. Indeed, the language of type theory connects these regions of science. It plays a role in computing and information science akin to that of set theory in pure mathematics. There are many excellent accounts of the basic ideas of type theory, especially at the interface of computer science and logic — specifically, in the literature of programming languages, semantics, formal methods and automated reasoning. Most of these are very technical, dense with formulas, inference rules, and computation rules. Here we follow the example of the mathematician Paul Halmos, who in 1960 wrote a 104page book called Naïve Set Theory intended to make the subject accessible to practicing mathematicians. His book served many generations well. This article follows the spirit of Halmos ’ book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos ’ book. The sections of this article follow his chapters closely. Every computer scientist agrees that every computer scientist must know some type theory; the disagreement begins in trying to decide how much is some. This article contains my partial answer to that question. The purpose of the article is to tell the beginning student of advanced computer science the basic type theoretic facts of life, and to do so with a minimum of philosophical discourse and logical formalism. The point throughout is that of a prospective computer scientist eager to study programming languages, or database systems, or computational complexity theory, or distributed systems or information discovery. In type theory, “naïve ” and “formal ” are contrasting words. The present treatment might best be described as informal type theory from a naïve point of view. The concepts are very general and very abstract; therefore they may
Naïve Type Theory
, 2002
"... This article follows the spirit of Halmos' book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos' book. The sections of this article follow his chapters closely. Every computer scientist ..."
Abstract
 Add to MetaCart
This article follows the spirit of Halmos' book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos' book. The sections of this article follow his chapters closely. Every computer scientist agrees that every computer scientist must know some type theory; the disagreement begins in trying to decide how much is some. This article contains my partial answer to that question. The purpose of the article is to tell the beginning student of advanced computer science the basic type theoretic facts of life, and to do so with a minimum of philosophical discourse and logical formalism. The point throughout is that of a prospective computer scientist eager to study programming languages, or database systems, or computational complexity theory, or distributed systems or information discovery
Constructive Membership and Indexes in Trees
, 2009
"... Trees carrying information stored in their nodes are a fundamental abstract data type. Approaching trees in a formal constructive environment allows us to realize properties of trees, inherent in their structure. Specifically we will look at the evidence provided by the predicates which operate on t ..."
Abstract
 Add to MetaCart
Trees carrying information stored in their nodes are a fundamental abstract data type. Approaching trees in a formal constructive environment allows us to realize properties of trees, inherent in their structure. Specifically we will look at the evidence provided by the predicates which operate on these trees. This evidence, expressed in terms of logical and programming languages, is realizable only in a constructive context. In the constructive setting, membership predicates over recursive types are inhabited by terms indexing the elements that satisfy the criteria for membership. In this paper, we motivate and explore this idea in the concrete setting of lists and trees. We first provide a background in constructive type theory and show relavent properties of trees. We present and define the concept of inhabitants of a generic shape type that corresponds naturally and exactly to the inhabitants of a membership predicate. In this context, (λx.T rue) ∈ S is the set of all indexes into S, but we show that not all subsets of indexes are expressible by strictly local predicates. Accordingly, we extend our membership predicates to predicates that compute and hold the state “from above” as well as allow “looking below”. The modified predicates of this form are complete in the sense that they can express every subset of indexes in S. These ideas are motivated by experience programming in Nuprl’s constructive type theory and the theorems for lists and trees have been formalized and mechanically checked. 1