Results 1 
1 of
1
Hadwiger’s conjecture for K6free graphs
 COMBINATORICA
, 1993
"... In 1943, Hadwiger made the conjecture that every loopless graph not contractible to the complete graph on t + 1 vertices is tcolourable. When t ≤ 3 this is easy, and when t = 4, Wagner’s theorem of 1937 shows the conjecture to be equivalent to the fourcolour conjecture (the 4CC). However, when t ..."
Abstract

Cited by 54 (2 self)
 Add to MetaCart
(Show Context)
In 1943, Hadwiger made the conjecture that every loopless graph not contractible to the complete graph on t + 1 vertices is tcolourable. When t ≤ 3 this is easy, and when t = 4, Wagner’s theorem of 1937 shows the conjecture to be equivalent to the fourcolour conjecture (the 4CC). However, when t ≥ 5 it has remained open. Here we show that when t = 5 it is also equivalent to the 4CC. More precisely, we show (without assuming the 4CC) that every minimal counterexample to Hadwiger’s conjecture when t = 5 is “apex”, that is, it consists of a planar graph with one additional vertex. Consequently, the 4CC implies Hadwiger’s conjecture when t = 5, because it implies that apex graphs are 5colourable.