Results 1  10
of
13
Range Searching
, 1996
"... Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , an ..."
Abstract

Cited by 70 (1 self)
 Add to MetaCart
Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , and let R be a family of subsets; elements of R are called ranges . We wish to preprocess S into a data structure so that for a query range R, the points in S " R can be reported or counted efficiently. Typical examples of ranges include rectangles, halfspaces, simplices, and balls. If we are only interested in answering a single query, it can be done in linear time, using linear space, by simply checking for each point p 2 S whether p lies in the query range.
New data structures for orthogonal range searching
 In Proc. 41st IEEE Symposium on Foundations of Computer Science
, 2000
"... ..."
Parallel Construction of Quadtrees and Quality Triangulations
, 1999
"... We describe e#cient PRAM algorithms for constructing unbalanced quadtrees, balanced quadtrees, and quadtreebased finite element meshes. Our algorithms take time O(log n) for point set input and O(log n log k) time for planar straightline graphs, using O(n + k/ log n) processors, where n measure ..."
Abstract

Cited by 61 (5 self)
 Add to MetaCart
We describe e#cient PRAM algorithms for constructing unbalanced quadtrees, balanced quadtrees, and quadtreebased finite element meshes. Our algorithms take time O(log n) for point set input and O(log n log k) time for planar straightline graphs, using O(n + k/ log n) processors, where n measures input size and k output size. 1. Introduction A crucial preprocessing step for the finite element method is mesh generation, and the most general and versatile type of twodimensional mesh is an unstructured triangular mesh. Such a mesh is simply a triangulation of the input domain (e.g., a polygon), along with some extra vertices, called Steiner points. Not all triangulations, however, serve equally well; numerical and discretization error depend on the quality of the triangulation, meaning the shapes and sizes of triangles. A typical quality guarantee gives a lower bound on the minimum angle in the triangulation. Baker et al. 1 first proved the existence of quality triangulations fo...
Marked Ancestor Problems
, 1998
"... Consider a rooted tree whose nodes can be marked or unmarked. Given a node, we want to find its nearest marked ancestor. This generalises the wellknown predecessor problem, where the tree is a path. ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
Consider a rooted tree whose nodes can be marked or unmarked. Given a node, we want to find its nearest marked ancestor. This generalises the wellknown predecessor problem, where the tree is a path.
Undirected Single Source Shortest Paths in Linear Time
 J. Assoc. Comput. Mach
, 1997
"... The single source shortest paths problem (SSSP) is one of the classic problems in algorithmic graph theory: given a weighted graph G with a source vertex s, find the shortest path from s to all other vertices in the graph. Since 1959 all theoretical developments in SSSP have been based on Dijkstra' ..."
Abstract

Cited by 49 (3 self)
 Add to MetaCart
The single source shortest paths problem (SSSP) is one of the classic problems in algorithmic graph theory: given a weighted graph G with a source vertex s, find the shortest path from s to all other vertices in the graph. Since 1959 all theoretical developments in SSSP have been based on Dijkstra's algorithm, visiting the vertices in order of increasing distance from s. Thus, any implementation of Dijkstra 's algorithm sorts the vertices according to their distances from s. However, we do not know how to sort in linear time. Here, a deterministic linear time and linear space algorithm is presented for the undirected single source shortest paths problem with integer weights. The algorithm avoids the sorting bottleneck by building a hierechical bucketing structure, identifying vertex pairs that may be visited in any order. 1 Introduction Let G = (V; E), jV j = n, jEj = m, be an undirected connected graph with an integer edge weight function ` : E ! N and a distinguished source vertex...
Tight(er) Worstcase Bounds on Dynamic Searching and Priority Queues
 In STOC’2000
, 2000
"... We introduce a novel technique for converting static polynomial space search structures for ordered sets into fullydynamic linear space data structures. Based on this we present optimal bounds for dynamic integer searching, including finger search, and exponentially improved bounds for priority queu ..."
Abstract

Cited by 43 (2 self)
 Add to MetaCart
We introduce a novel technique for converting static polynomial space search structures for ordered sets into fullydynamic linear space data structures. Based on this we present optimal bounds for dynamic integer searching, including finger search, and exponentially improved bounds for priority queues.
Approximate Data Structures with Applications (Extended Abstract)
, 1994
"... In this paper we introduce the notion of approximate data structures, in which a small amount of error is tolerated in the output. Approximate data structures trade error of approximation for faster operation, leading to theoretical and practical speedups for a wide variety of algorithms. We give a ..."
Abstract

Cited by 14 (7 self)
 Add to MetaCart
In this paper we introduce the notion of approximate data structures, in which a small amount of error is tolerated in the output. Approximate data structures trade error of approximation for faster operation, leading to theoretical and practical speedups for a wide variety of algorithms. We give approximate variants of the van Emde Boas data structure, which support the same dynamic operations as the standard van Emde Boas data structure [28, 20], except that answers to queries are approximate. The variants support all operations in constant time provided the error of approximation is 1/polylog(n), and in O(loglog n) time provided the error is 1/polynomial(n), for n elements in the data structure. We consider
Improved Bounds for Finger Search on a RAM
 In Algorithms – ESA 2003, LNCS Vol. 2832 (Springer 2003
, 2003
"... We present a new finger search tree with O(1) worstcase update time and O(log log d) expected search time with high probability in the Random Access Machine (RAM) model of computation for a large class of input distributions. The parameter d represents the number of elements (distance) between ..."
Abstract

Cited by 10 (8 self)
 Add to MetaCart
We present a new finger search tree with O(1) worstcase update time and O(log log d) expected search time with high probability in the Random Access Machine (RAM) model of computation for a large class of input distributions. The parameter d represents the number of elements (distance) between the search element and an element pointed to by a finger, in a finger search tree that stores n elements. For the need of the analysis we model the updates by a "balls and bins" combinatorial game that is interesting in its own right as it involves insertions and deletions of balls according to an unknown distribution.
Tsichlas, “Time and Space Efficient Content Queries for Video Databases
 MDDE ’01,Lyon, 4 th July 2001
"... Abstract: Indexing video content is one of the most important problems in video databases. In this paper we present a simple optimal algorithm for this problem that answers certain content queries invoking video functions in linear time and space in terms of the number of the objects appearing in t ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract: Indexing video content is one of the most important problems in video databases. In this paper we present a simple optimal algorithm for this problem that answers certain content queries invoking video functions in linear time and space in terms of the number of the objects appearing in the video. To accomplish this, we make a straightforward reduction of this problem to the intersection problem in Computational Geometry. Our result is an improvement over the one of V. S. Subrahmanian [10] by a logarithmic factor in storage and is achieved by using different basic data structures. This logarithmic save is of great importance in video databases because vast space is needed to store videos and metadata for each video. Finally, we present two timeefficient approaches. We also compare the CPU times of our algorithms by presenting experimental results.
Dynamic 3sided Planar Range Queries with Expected Doubly Logarithmic Time
 Proceedings of ISAAC, 2009
"... Abstract. We consider the problem of maintaining dynamically a set of points in the plane and supporting range queries of the type [a, b] × (−∞, c]. We assume that the inserted points have their xcoordinates drawn from a class of smooth distributions, whereas the ycoordinates are arbitrarily distr ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. We consider the problem of maintaining dynamically a set of points in the plane and supporting range queries of the type [a, b] × (−∞, c]. We assume that the inserted points have their xcoordinates drawn from a class of smooth distributions, whereas the ycoordinates are arbitrarily distributed. The points to be deleted are selected uniformly at random among the inserted points. For the RAM model, we present a linear space data structure that supports queries in O(log log n + t) expected time with high probability and updates in O(log log n) expected amortized time, where n is the number of points stored and t is the size of the output of the query. For the I/O model we support queries in O(log log B n + t/B) expected I/Os with high probability and updates in O(log B log n) expected amortized I/Os using linear space, where B is the disk block size. The data structures are deterministic and the expectation is with respect to the input distribution. 1