Results 1  10
of
225
An Efficient Solution to the FivePoint Relative Pose Problem
, 2004
"... An efficient algorithmic solution to the classical fivepoint relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth degre ..."
Abstract

Cited by 303 (11 self)
 Add to MetaCart
An efficient algorithmic solution to the classical fivepoint relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth degree polynomial in closed form and subsequently finding its roots. It is the first algorithm well suited for numerical implementation that also corresponds to the inherent complexity of the problem. We investigate the numerical precision of the algorithm. We also study its performance under noise in minimal as well as overdetermined cases. The performance is compared to that of the well known 8 and 7point methods and a 6point scheme. The algorithm is used in a robust hypothesizeandtest framework to estimate structure and motion in realtime with low delay. The realtime system uses solely visual input and has been demonstrated at major conferences.
MLESAC: A New Robust Estimator with Application to Estimating Image Geometry
 Computer Vision and Image Understanding
, 2000
"... A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solu ..."
Abstract

Cited by 241 (8 self)
 Add to MetaCart
A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solutions, but chooses the solution that maximizes the likelihood rather than just the number of inliers. The second part of the algorithm is a general purpose method for automatically parameterizing these relations, using the output of MLESAC. A difficulty with multiview image relations is that there are often nonlinear constraints between the parameters, making optimization a difficult task. The parameterization method overcomes the difficulty of nonlinear constraints and conducts a constrained optimization. The method is general and its use is illustrated for the estimation of fundamental matrices, image–image homographies, and quadratic transformations. Results are given for both synthetic and real images. It is demonstrated that the method gives results equal or superior to those of previous approaches. c ○ 2000 Academic Press 1.
The Fundamental matrix: theory, algorithms, and stability analysis
 International Journal of Computer Vision
, 1995
"... In this paper we analyze in some detail the geometry of a pair of cameras, i.e. a stereo rig. Contrarily to what has been done in the past and is still done currently, for example in stereo or motion analysis, we do not assume that the intrinsic parameters of the cameras are known (coordinates of th ..."
Abstract

Cited by 233 (14 self)
 Add to MetaCart
In this paper we analyze in some detail the geometry of a pair of cameras, i.e. a stereo rig. Contrarily to what has been done in the past and is still done currently, for example in stereo or motion analysis, we do not assume that the intrinsic parameters of the cameras are known (coordinates of the principal points, pixels aspect ratio and focal lengths). This is important for two reasons. First, it is more realistic in applications where these parameters may vary according to the task (active vision). Second, the general case considered here, captures all the relevant information that is necessary for establishing correspondences between two pairs of images. This information is fundamentally projective and is hidden in a confusing manner in the commonly used formalism of the Essential matrix introduced by LonguetHiggins [40]. This paper clarifies the projective nature of the correspondence problem in stereo and shows that the epipolar geometry can be summarized in one 3 \Theta 3 ma...
The development and comparison of robust methods for estimating the fundamental matrix
 International Journal of Computer Vision
, 1997
"... Abstract. This paper has two goals. The first is to develop a variety of robust methods for the computation of the Fundamental Matrix, the calibrationfree representation of camera motion. The methods are drawn from the principal categories of robust estimators, viz. case deletion diagnostics, Mest ..."
Abstract

Cited by 220 (9 self)
 Add to MetaCart
Abstract. This paper has two goals. The first is to develop a variety of robust methods for the computation of the Fundamental Matrix, the calibrationfree representation of camera motion. The methods are drawn from the principal categories of robust estimators, viz. case deletion diagnostics, Mestimators and random sampling, and the paper develops the theory required to apply them to nonlinear orthogonal regression problems. Although a considerable amount of interest has focussed on the application of robust estimation in computer vision, the relative merits of the many individual methods are unknown, leaving the potential practitioner to guess at their value. The second goal is therefore to compare and judge the methods. Comparative tests are carried out using correspondences generated both synthetically in a statistically controlled fashion and from feature matching in real imagery. In contrast with previously reported methods the goodness of fit to the synthetic observations is judged not in terms of the fit to the observations per se but in terms of fit to the ground truth. A variety of error measures are examined. The experiments allow a statistically satisfying and quasioptimal method to be synthesized, which is shown to be stable with up to 50 percent outlier contamination, and may still be used if there are more than 50 percent outliers. Performance bounds are established for the method, and a variety of robust methods to estimate the standard deviation of the error and covariance matrix of the parameters are examined. The results of the comparison have broad applicability to vision algorithms where the input data are corrupted not only by noise but also by gross outliers.
3D Model Acquisition from Extended Image Sequences
, 1995
"... This paper describes the extraction of 3D geometrical data from image sequences, for the purpose of creating 3D models of objects in the world. The approach is uncalibrated  camera internal parameters and camera motion are not known or required. Processing an image sequence is underpinned by token ..."
Abstract

Cited by 203 (25 self)
 Add to MetaCart
This paper describes the extraction of 3D geometrical data from image sequences, for the purpose of creating 3D models of objects in the world. The approach is uncalibrated  camera internal parameters and camera motion are not known or required. Processing an image sequence is underpinned by token correspondences between images. We utilise matching techniques which are both robust (detecting and discarding mismatches) and fully automatic. The matched tokens are used to compute 3D structure, which is initialised as it appears and then recursively updated over time. We describe a novel robust estimator of the trifocal tensor, based on a minimum number of token correspondences across an image triplet; and a novel tracking algorithm in which corners and line segments are matched over image triplets in an integrated framework. Experimental results are provided for a variety of scenes, including outdoor scenes taken with a handheld camcorder. Quantitative statistics are included to asses...
Selfcalibration and metric reconstruction in spite of varying and unknown internal camera parameters
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1999
"... In this paper the theoretical and practical feasibility of selfcalibration in the presence of varying intrinsic camera parameters is under investigation. The paper’s main contribution is to propose a selfcalibration method which efficiently deals with all kinds of constraints on the intrinsic came ..."
Abstract

Cited by 158 (13 self)
 Add to MetaCart
In this paper the theoretical and practical feasibility of selfcalibration in the presence of varying intrinsic camera parameters is under investigation. The paper’s main contribution is to propose a selfcalibration method which efficiently deals with all kinds of constraints on the intrinsic camera parameters. Within this framework a practical method is proposed which can retrieve metric reconstruction from image sequences obtained with uncalibrated zooming/focusing cameras. The feasibility of the approach is illustrated on real and synthetic examples. Besides this a theoretical proof is given which shows that the absence of skew in the image plane is sufficient to allow for selfcalibration. A counting argument is developed which—depending on the set of constraints—gives the minimum sequence length for selfcalibration and a method to detect critical motion sequences is proposed.
Linear Pushbroom Cameras
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1994
"... Modelling th# push broom sensors commonly used in satellite imagery is quite di#cult and computationally intensive due to th# complicated motion ofth# orbiting satellite with respect to th# rotating earth# In addition, th# math#46 tical model is quite complex, involving orbital dynamics, andh#(0k is ..."
Abstract

Cited by 140 (6 self)
 Add to MetaCart
Modelling th# push broom sensors commonly used in satellite imagery is quite di#cult and computationally intensive due to th# complicated motion ofth# orbiting satellite with respect to th# rotating earth# In addition, th# math#46 tical model is quite complex, involving orbital dynamics, andh#(0k is di#cult to analyze. Inth#A paper, a simplified model of apush broom sensor(th# linear push broom model) is introduced. Ith as th e advantage of computational simplicity wh#A9 atth# same time giving very accurate results compared with th# full orbitingpush broom model. Meth# ds are given for solving th# major standardph# togrammetric problems for th e linear push broom sensor. Simple noniterative solutions are given for th# following problems : computation of th# model parameters from groundcontrol points; determination of relative model parameters from image correspondences between two images; scene reconstruction given image correspondences and groundcontrol points. In addition, th# linearpush broom model leads toth#0 retical insigh ts th# t will be approximately valid for th# full model as well.Th# epipolar geometry of linear push broom cameras in investigated and sh own to be totally di#erent from th at of a perspective camera. Neverth eless, a matrix analogous to th e essential matrix of perspective cameras issh own to exist for linear push broom sensors. Fromth#0 it is sh# wn th# t a scene is determined up to an a#ne transformation from two viewswith linearpush broom cameras. Keywords :push broom sensor, satellite image, essential matrixph# togrammetry, camera model The research describ ed in this paper hasb een supportedb y DARPA Contract #MDA97291 C0053 1 Real Push broom sensors are commonly used in satellite cameras, notably th# SPOT satellite forth# generatio...
In Defence of the 8point Algorithm
"... The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the 8point algoritm is a frequent#e cit#3 met#9 d for comput#10 t he fundament al ma t# ix from a set of 8 or more point mat ches. It hast he advant age of simplicit y of implement at ion. The ..."
Abstract

Cited by 133 (3 self)
 Add to MetaCart
The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the 8point algoritm is a frequent#e cit#3 met#9 d for comput#10 t he fundament al ma t# ix from a set of 8 or more point mat ches. It hast he advant age of simplicit y of implement at ion. The prevailing view is, however,t#(9 it isext#3791( suscept#43 t o noise and hence virtually useless for most purposes. This paper challengest#en view, by showing t#ng by precedingt he algorit hm wit h a very simple normalizat ion(t ranslat ion and scaling) oft he coordinat es oft he mat ched point#( result# are obt# ined comparable wit# t he best it## at ive algorit#209 This improved performance is just#690 byt#1082 and verified byext#259( e experiment s on real images.
In Defense of the EightPoint Algorithm
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1997
"... Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eightpoint algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the advantage of simplicity of implementati ..."
Abstract

Cited by 132 (1 self)
 Add to MetaCart
Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eightpoint algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the advantage of simplicity of implementation. The prevailing view is, however, that it is extremely susceptible to noise and hence virtually useless for most purposes. This paper challenges that view, by showing that by preceding the algorithm with a very simple normalization (translation and scaling) of the coordinates of the matched points, results are obtained comparable with the best iterative algorithms. This improved performance is justified by theory and verified by extensive experiments on real images. Index Terms—Fundamental matrix, eightpoint algorithm, condition number, epipolar structure, stereo vision.
Geometric Motion Segmentation and Model Selection
 Phil. Trans. Royal Society of London A
, 1998
"... this paper we place the three problems into a common statistical framework; investigating the use of information criteria and robust mixture models as a principled way for motion segmentation of images. The final result is a general fully automatic algorithm for clustering that works in the presence ..."
Abstract

Cited by 103 (2 self)
 Add to MetaCart
this paper we place the three problems into a common statistical framework; investigating the use of information criteria and robust mixture models as a principled way for motion segmentation of images. The final result is a general fully automatic algorithm for clustering that works in the presence of noise and outliers. 1. Introduction