Results 1 
6 of
6
Types, Abstraction, and Parametric Polymorphism, Part 2
, 1991
"... The concept of relations over sets is generalized to relations over an arbitrary category, and used to investigate the abstraction (or logicalrelations) theorem, the identity extension lemma, and parametric polymorphism, for Cartesianclosedcategory models of the simply typed lambda calculus and P ..."
Abstract

Cited by 53 (1 self)
 Add to MetaCart
The concept of relations over sets is generalized to relations over an arbitrary category, and used to investigate the abstraction (or logicalrelations) theorem, the identity extension lemma, and parametric polymorphism, for Cartesianclosedcategory models of the simply typed lambda calculus and PLcategory models of the polymorphic typed lambda calculus. Treatments of Kripke relations and of complete relations on domains are included.
The Discrete Objects in the Effective Topos
 Proc. London Math. Soc
, 1990
"... The original aim of this paper was to give a rather quick and undemanding proof that the effective topos contains two nontrivial small (i.e. internal) full subcategories which are closed under all small limits in the topos (and hence in particular are internally complete). The interest in such subc ..."
Abstract

Cited by 24 (6 self)
 Add to MetaCart
The original aim of this paper was to give a rather quick and undemanding proof that the effective topos contains two nontrivial small (i.e. internal) full subcategories which are closed under all small limits in the topos (and hence in particular are internally complete). The interest in such subcategories arises from
On functors expressible in the polymorphic typed lambda calculus
 Logical Foundations of Functional Programming
, 1990
"... This is a preprint of a paper that has been submitted to Information and Computation. ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
This is a preprint of a paper that has been submitted to Information and Computation.
The not so simple proofirrelevant model of CC
 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2002
"... It is wellknown that the Calculus of Constructions (CC) bears a simple settheoretical model in which proofterms are mapped onto a single object—a property which is known as proofirrelevance. In this paper, we show that when going into the (generally omitted) technical details, this naive model r ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
It is wellknown that the Calculus of Constructions (CC) bears a simple settheoretical model in which proofterms are mapped onto a single object—a property which is known as proofirrelevance. In this paper, we show that when going into the (generally omitted) technical details, this naive model raises several unexpected difficulties related to the interpretation of the impredicative level, especially for the soundness property which is surprisingly difficult to be given a correct proof in this simple framework. We propose a way to tackle these difficulties, thus giving a (more) detailed elementary consistency proof of CC without going back to a translation to Fω. We also discuss some possible alternatives and possible extensions of our construction.
An Introduction to Polymorphic Lambda Calculus
 Logical Foundations of Functional Programming
, 1994
"... Introduction to the Polymorphic Lambda Calculus John C. Reynolds Carnegie Mellon University December 23, 1994 The polymorphic (or secondorder) typed lambda calculus was invented by JeanYves Girard in 1971 [11, 10], and independently reinvented by myself in 1974 [24]. It is extraordinary that ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Introduction to the Polymorphic Lambda Calculus John C. Reynolds Carnegie Mellon University December 23, 1994 The polymorphic (or secondorder) typed lambda calculus was invented by JeanYves Girard in 1971 [11, 10], and independently reinvented by myself in 1974 [24]. It is extraordinary that essentially the same programming language was formulated independently by the two of us, especially since we were led to the language by entirely different motivations. In my own case, I was seeking to extend conventional typed programming languages to permit the definition of "polymorphic" procedures that could accept arguments of a variety of types. I started with the ordinary typed lambda calculus and added the ability to pass types as parameters (an idea that was "in the air" at the time, e.g. [4]). For example, as in the ordinary typed lambda calculus one can write f int!int : x int : f(f (x)) to denote the "doubling" function for the type int, which accepts a function from integers
Course Notes in Typed Lambda Calculus
, 1998
"... this paper is clearly stated, after recalling how the logical connectives can be explained in term of the Sheffer connective: "We are led to the idea, which at first glance certainly appears extremely bold of attempting to eliminate by suitable reduction the remaining fundamental notions, those of p ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
this paper is clearly stated, after recalling how the logical connectives can be explained in term of the Sheffer connective: "We are led to the idea, which at first glance certainly appears extremely bold of attempting to eliminate by suitable reduction the remaining fundamental notions, those of proposition, propositional function, and variable, from those contexts in which we are dealing with completely arbitrary, logical general propositions . . . To examine this possibility more closely and to pursue it would be valuable not only from the methodological point of view that enjoins us to strive for the greatest possible conceptual uniformity but also from a certain philosophic, or if you wish, aesthetic point of view."