Results 11  20
of
32
Proofsearch in typetheoretic languages: an introduction
 Theoretical Computer Science
, 2000
"... We introduce the main concepts and problems in the theory of proofsearch in typetheoretic languages and survey some specific, connected topics. We do not claim to cover all of the theoretical and implementation issues in the study of proofsearch in typetheoretic languages; rather, we present som ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We introduce the main concepts and problems in the theory of proofsearch in typetheoretic languages and survey some specific, connected topics. We do not claim to cover all of the theoretical and implementation issues in the study of proofsearch in typetheoretic languages; rather, we present some key ideas and problems, starting from wellmotivated points of departure such as a definition of a typetheoretic language or the relationship between languages and proofobjects. The strong connections between different proofsearch methods in logics, type theories and logical frameworks, together with their impact on programming and implementation issues, are central in this context.
Sheaf Representation for Topoi
, 1997
"... It is shown that every (small) topos is equivalent to the category of global sections of a sheaf of socalled hyperlocal topoi, improving on a result of Lambek & Moerdijk. It follows that every boolean topos is equivalent to the global sections of a sheaf of wellpointed topoi. Completeness ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
It is shown that every (small) topos is equivalent to the category of global sections of a sheaf of socalled hyperlocal topoi, improving on a result of Lambek & Moerdijk. It follows that every boolean topos is equivalent to the global sections of a sheaf of wellpointed topoi. Completeness theorems for higherorder logic result as corollaries. The main result of this paper is the following. Theorem (Sheaf representation for topoi). For any small topos E, there is a sheaf of categories e E on a topological space, such that: (i) E is equivalent to the category of global sections of e E, (ii) every stalk of e E is a hyperlocal topos. Moreover, E is boolean just if every stalk of e E is wellpointed. Before defining the term "hyperlocal," we indicate some of the background of the theorem. The original and most familiar sheaf representations are for commutative rings (see [12, ch. 5] for a survey); e.g. a wellknown theorem due to Grothendieck [9] asserts that every commutative r...
THE COMPREHENSIVE FACTORIZATION AND TORSORS
, 2010
"... This is an expanded, revised and corrected version of the first author's preprint [1]. The discussion of onedimensional cohomology H1 in a fairly general category E involves passing to the (2)category Cat(E) of categories in E. In particular, the coe cient object is a category B in E and the ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
This is an expanded, revised and corrected version of the first author's preprint [1]. The discussion of onedimensional cohomology H1 in a fairly general category E involves passing to the (2)category Cat(E) of categories in E. In particular, the coe cient object is a category B in E and the torsors that H1 classifies are particular functors in E. We only impose conditions on E that are satisfied also by Cat(E) and argue that H1 for Cat(E) is a kind of H2 for E, and so on recursively. For us, it is too much to ask E to be a topos (or even internally complete) since, even if E is, Cat(E) is not. With this motivation, we are led to examine morphisms in E which act as internal families and to internalize the comprehensive factorization of functors into a nal functor followed by a discrete bration. We de ne Btorsors for a category B in E and prove clutching and classification theorems. The former theorem clutches ƒech cocycles to construct torsors while the latter constructs a coefficient category to classify structures locally isomorphic to members of a given internal family of structures. We conclude with applications to examples.
Distribution Algebras and Duality
, 2000
"... INTRODUCTION By an Svalued distribution on a topos E bounded over a base topos S it is meant here a cocontinuous Sindexed functor : E ! S. Since introduced by F. W. Lawvere in 1983, considerable progress has been made in the study of distributions on toposes from a variety of viewpoints [19, 15, ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
INTRODUCTION By an Svalued distribution on a topos E bounded over a base topos S it is meant here a cocontinuous Sindexed functor : E ! S. Since introduced by F. W. Lawvere in 1983, considerable progress has been made in the study of distributions on toposes from a variety of viewpoints [19, 15, 24, 5, 6, 12, 7, 8, 9]. However, much work still remains to be done in this area. The purpose of this paper is to deepen our understanding of topos distributions by exploring a (dual) latticetheoretic notion of distribution algebra. We characterize the distribution algebras in E relative to S as the Sbicomplete Satomic Heyting algebras in E . As an illustration, we employ distribution algebras explicitly in order to give an alternative description of the display locale (complete spread) of a distribution [10, 12, 7].
Relational Limits in General Polymorphism
, 1993
"... Parametric models of polymorphic lambda calculus have the structure of enriched categories with cotensors and ends in some generalized sense, and thus have many categorical data types induced by them. The !order minimum model is a parametric model. 1 Introduction Higher order quantifier of polymor ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Parametric models of polymorphic lambda calculus have the structure of enriched categories with cotensors and ends in some generalized sense, and thus have many categorical data types induced by them. The !order minimum model is a parametric model. 1 Introduction Higher order quantifier of polymorphic lambda calculus has several meanings. Two inventors of the calculus use different symbols. When Girard wrote V X:F (X) [10] (\PiX:F (X) in [12]), it corresponded to a higher order quantified formula 8X:F (X) via CurryHoward isomorphism. When Reynolds wrote \DeltaX:F (X) [33], it was the type of polymorphism, especially of parametric polymorphism [34]. The third interpretation leaded by categorical semantics is that the quantified type, we write 8X:F (X), is a kind of limits. The notation \PiX:F (X) suggests that it might be regarded as a product of all F (X) where X ranges over all types. That is to say, \PiX:F (X) is the collection of all sections (a section is a function sending a...
DUALITY AND TRACES FOR INDEXED MONOIDAL CATEGORIES
"... Abstract. By the Lefschetz fixed point theorem, if an endomorphism of a topological space is fixedpointfree, then its Lefschetz number vanishes. This necessary condition is not usually sufficient, however; for that we need a refinement of the Lefschetz number called the Reidemeister trace. Abstrac ..."
Abstract
 Add to MetaCart
Abstract. By the Lefschetz fixed point theorem, if an endomorphism of a topological space is fixedpointfree, then its Lefschetz number vanishes. This necessary condition is not usually sufficient, however; for that we need a refinement of the Lefschetz number called the Reidemeister trace. Abstractly, the Lefschetz number is a trace in a symmetric monoidal category, while the Reidemeister trace is a trace in a bicategory; in this paper we relate these contexts using indexed symmetric monoidal categories. In particular, we will show that for any symmetric monoidal category with an associated indexed symmetric monoidal category, there is an associated bicategory which produces refinements of trace analogous to the Reidemeister trace. This bicategory also produces a new notion of trace for parametrized spaces with dualizable fibers, which refines the obvious “fiberwise ” traces by incorporating the action of the fundamental group of the base space. We also advance the basic theory of indexed monoidal categories, including introducing a string diagram calculus which makes calculations much more tractable. This abstract framework lays the foundation for generalizations of these ideas to other
Printed in Great Britain Locally cartesian closed categories and type theory
, 1983
"... 0. Introduction. It is well known that for much of the mathematics of topos theory, it is in fact sufficient to use a category C whose slice categories C/A are cartesian closed. In such a category, the notion of a 'generalized set', for example an 'Aindexed ..."
Abstract
 Add to MetaCart
0. Introduction. It is well known that for much of the mathematics of topos theory, it is in fact sufficient to use a category C whose slice categories C/A are cartesian closed. In such a category, the notion of a 'generalized set', for example an 'Aindexed
TIGHTLY BOUNDED COMPLETIONS
"... Abstract. By a ‘completion ’ on a 2category K we mean here an idempotent pseudomonad on K. We are particularly interested in pseudomonads that arise from KZdoctrines. Motivated by a question of Lawvere, we compare the Cauchy completion [23], defined in the setting of VCat for V a symmetric monoida ..."
Abstract
 Add to MetaCart
Abstract. By a ‘completion ’ on a 2category K we mean here an idempotent pseudomonad on K. We are particularly interested in pseudomonads that arise from KZdoctrines. Motivated by a question of Lawvere, we compare the Cauchy completion [23], defined in the setting of VCat for V a symmetric monoidal closed category, with the Grothendieck completion [7], defined in the setting of SIndexed Cat for S a topos. To this end we introduce a unified setting (‘indexed enriched category theory’) in which to formulate and study certain properties of KZdoctrines. We find that, whereas all of the KZdoctrines that are relevant to this discussion (Karoubi, Cauchy, Stack, Grothendieck) may be regarded as ‘bounded’, only the Cauchy and the Grothendieck completions are ‘tightly bounded ’ – two notions that we introduce and study in this paper. Tightly bounded KZdoctrines are shown to be idempotent. We also show, in a different approach to answering the motivating question, that the Cauchy completion (defined using ‘distributors ’ [2]) and the Grothendieck completion (defined using ‘generalized functors’ [21]) are actually equivalent constructions1.