Results 11  20
of
33
Modified Realizability Toposes and Strong Normalization Proofs (Extended Abstract)
 Typed Lambda Calculi and Applications, LNCS 664
, 1993
"... ) 1 J. M. E. Hyland 2 C.H. L. Ong 3 University of Cambridge, England Abstract This paper is motivated by the discovery that an appropriate quotient SN 3 of the strongly normalising untyped 3terms (where 3 is just a formal constant) forms a partial applicative structure with the inherent appl ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
) 1 J. M. E. Hyland 2 C.H. L. Ong 3 University of Cambridge, England Abstract This paper is motivated by the discovery that an appropriate quotient SN 3 of the strongly normalising untyped 3terms (where 3 is just a formal constant) forms a partial applicative structure with the inherent application operation. The quotient structure satisfies all but one of the axioms of a partial combinatory algebra (pca). We call such partial applicative structures conditionally partial combinatory algebras (cpca). Remarkably, an arbitrary rightabsorptive cpca gives rise to a tripos provided the underlying intuitionistic predicate logic is given an interpretation in the style of Kreisel's modified realizability, as opposed to the standard Kleenestyle realizability. Starting from an arbitrary rightabsorptive cpca U , the tripostotopos construction due to Hyland et al. can then be carried out to build a modified realizability topos TOPm (U ) of nonstandard sets equipped with an equali...
From Coherent Structures to Universal Properties
 J. Pure Appl. Algebra
, 1999
"... Given a 2category K admitting a calculus of bimodules, and a 2monad T on it compatible with such calculus, we construct a 2category L with a 2monad S on it such that: • S has the adjointpseudoalgebra property. • The 2categories of pseudoalgebras of S and T are equivalent. Thus, coh ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
Given a 2category K admitting a calculus of bimodules, and a 2monad T on it compatible with such calculus, we construct a 2category L with a 2monad S on it such that: • S has the adjointpseudoalgebra property. • The 2categories of pseudoalgebras of S and T are equivalent. Thus, coherent structures (pseudoTalgebras) are transformed into universally characterised ones (adjointpseudoSalgebras). The 2category L consists of lax algebras for the pseudomonad induced by T on the bicategory of bimodules of K. We give an intrinsic characterisation of pseudoSalgebras in terms of representability. Two major consequences of the above transformation are the classifications of lax and strong morphisms, with the attendant coherence result for pseudoalgebras. We apply the theory in the context of internal categories and examine monoidal and monoidal globular categories (including their monoid classifiers) as well as pseudofunctors into Cat.
First Order Linear Logic in Symmetric Monoidal Closed Categories
, 1991
"... There has recently been considerable interest in the development of `logical frameworks ' which can represent many of the logics arising in computer science in a uniform way. Within the Edinburgh LF project, this concept is split into two components; the first being a general proof theoretic encodin ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
There has recently been considerable interest in the development of `logical frameworks ' which can represent many of the logics arising in computer science in a uniform way. Within the Edinburgh LF project, this concept is split into two components; the first being a general proof theoretic encoding of logics, and the second a uniform treatment of their model theory. This thesis forms a case study for the work on model theory. The models of many first and higher order logics can be represented as fibred or indexed categories with certain extra structure, and this has been suggested as a general paradigm. The aim of the thesis is to test the strength and flexibility of this paradigm by studying the specific case of Girard's linear logic. It should be noted that the exact form of this logic in the first order case is not entirely certain, and the system treated here is significantly different to that considered by Girard.
Some properties of Fib as a fibred 2category
, 1997
"... We consider some basic properties of the 2category Fib of fibrations over arbitrary bases, exploiting the fact that it is fibred over Cat. We show a factorisation property for adjunctions in Fib, which has direct consequences for fibrations, e.g. a characterisation of limits and colimits for them. ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
We consider some basic properties of the 2category Fib of fibrations over arbitrary bases, exploiting the fact that it is fibred over Cat. We show a factorisation property for adjunctions in Fib, which has direct consequences for fibrations, e.g. a characterisation of limits and colimits for them. We also consider oplax colimits in Fib, with the construction of Kleisli objects as a particular example. All our constructions are based on an elementary characterisation of Fib as a fibration.
Equivalences between Logics and their Representing Type Theories
, 1992
"... We propose a new framework for representing logics, called LF + and based on the Edinburgh Logical Framework. The new framework allows us to give, apparently for the first time, general definitions which capture how well a logic has been represented. These definitions are possible since we are abl ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
We propose a new framework for representing logics, called LF + and based on the Edinburgh Logical Framework. The new framework allows us to give, apparently for the first time, general definitions which capture how well a logic has been represented. These definitions are possible since we are able to distinguish in a generic way that part of the LF + entailment which corresponds to the underlying logic. This distinction does not seem to be possible with other frameworks. Using our definitions, we show that, for example, natural deduction firstorder logic can be wellrepresented in LF + , whereas linear and relevant logics cannot. We also show that our syntactic definitions of representation have a simple formulation as indexed isomorphisms, which both confirms that our approach is a natural one and provides a link between typetheoretic and categorical approaches to frameworks. 1 Introduction Much effort has been devoted to building systems for supporting the construction of f...
Formalizing categorical models of type theory in type theory
 In International Workshop on Logical Frameworks and MetaLanguages: Theory and Practice
, 2007
"... This note is about work in progress on the topic of “internal type theory ” where we investigate the internal formalization of the categorical metatheory of constructive type theory in (an extension of) itself. The basic notion is that of a category with families, a categorical notion of model of de ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
This note is about work in progress on the topic of “internal type theory ” where we investigate the internal formalization of the categorical metatheory of constructive type theory in (an extension of) itself. The basic notion is that of a category with families, a categorical notion of model of dependent type theory. We discuss how to formalize the notion of category with families inside type theory and how to build initial categories with families. Initial categories with families will be term models which play the role of canonical syntax for dependent type theory. We also discuss the formalization of the result that categories with finite limits give rise to categories with families. This yields a typetheoretic perspective on Curien’s work on “substitution up to isomorphism”. Our formalization is being carried out in the proof assistant Agda 2 developed at Chalmers. 1
A Fibrational Theory of Geometric Morphisms
, 1998
"... Introduction Category theory can be viewed as an elementary, i.e. essentially first order, theory independent from set theory. In an elementary topos, i.e. a category satisfying a number of elementary axioms, one can perform all constructions that one performes with sets in everyday mathematics. Ne ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Introduction Category theory can be viewed as an elementary, i.e. essentially first order, theory independent from set theory. In an elementary topos, i.e. a category satisfying a number of elementary axioms, one can perform all constructions that one performes with sets in everyday mathematics. Nevertheless, the language of category theory is not expressive enough to capture those categorical notions that make reference to set theory. Amongst those are: (co)completeness, (local) smallness, existence of a small set of generators and wellpoweredness. If we want to replace the category of sets by a category B whose objects are regarded as index sets we need an abstract theory of families. Such a theory is the theory of fibred categories. We can choose B as a topos but for most purposes it suffices that B has pullbacks. A category fibred over B is a functor P : E ! B
Behavioral extensions of institutions
 Proc. 1st Conf. on Algebra and Coalgebra in Computer Science CALCO’05, Swansea. Springer LNCS 3629
, 2005
"... Abstract. We show that any institution I satisfying some reasonable conditions can be transformed into another institution, Ibeh, which captures formally and abstractly the intuitions of adding support for behavioral equivalence and reasoning to an existing, particular algebraic framework. We call o ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. We show that any institution I satisfying some reasonable conditions can be transformed into another institution, Ibeh, which captures formally and abstractly the intuitions of adding support for behavioral equivalence and reasoning to an existing, particular algebraic framework. We call our transformation an “extension ” because Ibeh has the same sentences as I and because its entailment relation includes that of I. Many properties of behavioral equivalence in concrete hidden logics follow as special cases of corresponding institutional results. As expected, the presented constructions and results can be instantiated to other logics satisfying our requirements as well, thus leading to novel behavioral logics, such as partial or infinitary ones, that have the desired properties. 1