Results 1  10
of
38
Relations in Concurrency
"... The theme of this paper is profunctors, and their centrality and ubiquity in understanding concurrent computation. Profunctors (a.k.a. distributors, or bimodules) are a generalisation of relations to categories. Here they are first presented and motivated via spans of event structures, and the seman ..."
Abstract

Cited by 262 (33 self)
 Add to MetaCart
The theme of this paper is profunctors, and their centrality and ubiquity in understanding concurrent computation. Profunctors (a.k.a. distributors, or bimodules) are a generalisation of relations to categories. Here they are first presented and motivated via spans of event structures, and the semantics of nondeterministic dataflow. Profunctors are shown to play a key role in relating models for concurrency and to support an interpretation as higherorder processes (where input and output may be processes). Two recent directions of research are described. One is concerned with a language and computational interpretation for profunctors. This addresses the duality between input and output in profunctors. The other is to investigate general spans of event structures (the spans can be viewed as special profunctors) to give causal semantics to higherorder processes. For this it is useful to generalise event structures to allow events which “persist.”
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 45 (19 self)
 Add to MetaCart
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
On the Interpretation of Type Theory in Locally Cartesian Closed Categories
 Proceedings of Computer Science Logic, Lecture Notes in Computer Science
, 1994
"... . We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to define a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of exten ..."
Abstract

Cited by 39 (1 self)
 Add to MetaCart
. We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to define a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of extensional type theory in intensional type theory. 1 Introduction and Motivation Interpreting dependent type theory in locally cartesian closed categories (lcccs) and more generally in (non split) fibrational models like the ones described in [7] is an intricate problem. The reason is that in order to interpret terms associated with substitution like pairing for \Sigma types or application for \Pitypes one needs a semantical equivalent to syntactic substitution. To clarify the issue let us have a look at the "naive" approach described in Seely's seminal paper [14] which contains a subtle inaccuracy. Assume some dependently typed calculus like the one defined in [10] and an lccc C (a category ...
Internal Type Theory
 Lecture Notes in Computer Science
, 1996
"... . We introduce categories with families as a new notion of model for a basic framework of dependent types. This notion is close to ordinary syntax and yet has a clean categorical description. We also present categories with families as a generalized algebraic theory. Then we define categories with f ..."
Abstract

Cited by 37 (7 self)
 Add to MetaCart
. We introduce categories with families as a new notion of model for a basic framework of dependent types. This notion is close to ordinary syntax and yet has a clean categorical description. We also present categories with families as a generalized algebraic theory. Then we define categories with families formally in MartinLof's intensional intuitionistic type theory. Finally, we discuss the coherence problem for these internal categories with families. 1 Introduction In a previous paper [8] I introduced a general notion of simultaneous inductiverecursive definition in intuitionistic type theory. This notion subsumes various reflection principles and seems to pave the way for a natural development of what could be called "internal type theory", that is, the construction of models of (fragments of) type theory in type theory, and more generally, the formalization of the metatheory of type theory in type theory. The present paper is a first investigation of such an internal type theor...
Wellfounded Trees in Categories
, 1999
"... this paper, we give an abstract 2 categorical characterization of Wtypes. We calculate these Wtypes explicitly in some categories of presheaves and sheaves on a site, and in the gluing category or Freyd cover. (We also have an explicit description in the case of Hyland's realizability topos, ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
this paper, we give an abstract 2 categorical characterization of Wtypes. We calculate these Wtypes explicitly in some categories of presheaves and sheaves on a site, and in the gluing category or Freyd cover. (We also have an explicit description in the case of Hyland's realizability topos, which will be presented in [17].) These explicit calculations can be formalized in a weak predicative metatheory, and lead to the result that if E is any suitably filtered pretopos with dependent products and Wtypes, then so is the category of internal sheaves on a site in E (Remark 5.9). Our paper is organized as follows. In Section 2 we review some standard definitions concerning pretoposes and dependent products. In Section 3 we present the categorical definition of the Wconstruction, and in Section 4 we prove some of its basic functoriality properties; e.g., that it turns coequalizers into equalizers. In Section 5, a construction is presented which to each map between (pre)sheaves of sets associates a sheaf of wellfounded trees, and it is proved that this is in fact the Wtype in the category (pre)sheaves of sets (Theorem 5.6). In Section 6, we discuss the Wconstruction for the Freyd cover. Finally, in Section 7 it is shown how these categorical constructions are not only analogous to but explicitly related to MartinLof type theory. 2 Pretoposes and dependent products
A semantic view of classical proofs  typetheoretic, categorical, and denotational characterizations (Extended Abstract)
 IN PROCEEDINGS OF LICS '96
, 1996
"... Classical logic is one of the best examples of a mathematical theory that is truly useful to computer science. Hardware and software engineers apply the theory routinely. Yet from a foundational standpoint, there are aspects of classical logic that are problematic. Unlike intuitionistic logic, class ..."
Abstract

Cited by 30 (2 self)
 Add to MetaCart
Classical logic is one of the best examples of a mathematical theory that is truly useful to computer science. Hardware and software engineers apply the theory routinely. Yet from a foundational standpoint, there are aspects of classical logic that are problematic. Unlike intuitionistic logic, classical logic is often held to be nonconstructive, and so, is said to admit no proof semantics. To draw an analogy in the proofsas programs paradigm, it is as if we understand well the theory of manipulation between equivalent specifications (which we do), but have comparatively little foundational insight of the process of transforming one program to another that implements the same specification. This extended abstract outlines a semantic theory of classical proofs based on a variant of Parigot's λµcalculus [24], but presented here as a type theory. After reviewing the conceptual problems in the area and the potential benefits of such a theory, we sketch the key steps of our approach in ...
The Discrete Objects in the Effective Topos
 Proc. London Math. Soc
, 1990
"... The original aim of this paper was to give a rather quick and undemanding proof that the effective topos contains two nontrivial small (i.e. internal) full subcategories which are closed under all small limits in the topos (and hence in particular are internally complete). The interest in such subc ..."
Abstract

Cited by 25 (6 self)
 Add to MetaCart
The original aim of this paper was to give a rather quick and undemanding proof that the effective topos contains two nontrivial small (i.e. internal) full subcategories which are closed under all small limits in the topos (and hence in particular are internally complete). The interest in such subcategories arises from
Interpolation in Grothendieck Institutions
 THEORETICAL COMPUTER SCIENCE
, 2003
"... It is well known that interpolation properties of logics underlying specification formalisms play an important role in the study of structured specifications, they have also many other useful logical consequences. In this paper, we solve the interpolation problem for Grothendieck institutions which ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
It is well known that interpolation properties of logics underlying specification formalisms play an important role in the study of structured specifications, they have also many other useful logical consequences. In this paper, we solve the interpolation problem for Grothendieck institutions which have recently emerged as an important mathematical structure underlying heterogenous multilogic specification. Our main result can be used in the applications in several different ways. It can be used to establish interpolation properties for multilogic Grothendieck institutions, but also to lift interpolation properties from unsorted logics to their many sorted variants. The importance of the latter resides in the fact that, unlike other structural properties of logics, many sorted interpolation is a nontrivial generalisation of unsorted interpolation. The concepts, results, and the applications discussed in this paper are illustrated with several examples from conventional logic and algebraic specification theory.
A CategoryTheoretic Account of Program Modules
 Mathematical Structures in Computer Science
, 1994
"... The typetheoretic explanation of modules proposed to date (for programming languages like ML) is unsatisfactory, because it does not capture that evaluation of typeexpressions is independent from evaluation of programexpressions. We propose a new explanation based on \programming languages as inde ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
The typetheoretic explanation of modules proposed to date (for programming languages like ML) is unsatisfactory, because it does not capture that evaluation of typeexpressions is independent from evaluation of programexpressions. We propose a new explanation based on \programming languages as indexed categories" and illustrates how ML can be extended to support higher order modules, by developing a categorytheoretic semantics for a calculus of modules with dependent types. The paper outlines also a methodology, which may lead to a modular approach in the study of programming languages. Introduction The addition of module facilities to programming languages is motivated by the need to provide a better environment for the development and maintenance of large programs. Nowadays many programming languages include such facilities. Throughout the paper Standard ML (see [Mac85, HMM86, MTH90]) is taken as representative for these languages. The implementation of module facilities has been ...