Results 1  10
of
11
How to Use Expert Advice
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1997
"... We analyze algorithms that predict a binary value by combining the predictions of several prediction strategies, called experts. Our analysis is for worstcase situations, i.e., we make no assumptions about the way the sequence of bits to be predicted is generated. We measure the performance of the ..."
Abstract

Cited by 317 (66 self)
 Add to MetaCart
We analyze algorithms that predict a binary value by combining the predictions of several prediction strategies, called experts. Our analysis is for worstcase situations, i.e., we make no assumptions about the way the sequence of bits to be predicted is generated. We measure the performance of the algorithm by the difference between the expected number of mistakes it makes on the bit sequence and the expected number of mistakes made by the best expert on this sequence, where the expectation is taken with respect to the randomization in the predictions. We show that the minimum achievable difference is on the order of the square root of the number of mistakes of the best expert, and we give efficient algorithms that achieve this. Our upper and lower bounds have matching leading constants in most cases. We then show howthis leads to certain kinds of pattern recognition/learning algorithms with performance bounds that improve on the best results currently known in this context. We also compare our analysis to the case in which log loss is used instead of the expected number of mistakes.
A Game of Prediction with Expert Advice
 Journal of Computer and System Sciences
, 1997
"... We consider the following problem. At each point of discrete time the learner must make a prediction; he is given the predictions made by a pool of experts. Each prediction and the outcome, which is disclosed after the learner has made his prediction, determine the incurred loss. It is known that, u ..."
Abstract

Cited by 106 (7 self)
 Add to MetaCart
We consider the following problem. At each point of discrete time the learner must make a prediction; he is given the predictions made by a pool of experts. Each prediction and the outcome, which is disclosed after the learner has made his prediction, determine the incurred loss. It is known that, under weak regularity, the learner can ensure that his cumulative loss never exceeds cL+ a ln n, where c and a are some constants, n is the size of the pool, and L is the cumulative loss incurred by the best expert in the pool. We find the set of those pairs (c; a) for which this is true.
Sequential Prediction of Individual Sequences Under General Loss Functions
 IEEE Transactions on Information Theory
, 1998
"... We consider adaptive sequential prediction of arbitrary binary sequences when the performance is evaluated using a general loss function. The goal is to predict on each individual sequence nearly as well as the best prediction strategy in a given comparison class of (possibly adaptive) prediction st ..."
Abstract

Cited by 75 (7 self)
 Add to MetaCart
We consider adaptive sequential prediction of arbitrary binary sequences when the performance is evaluated using a general loss function. The goal is to predict on each individual sequence nearly as well as the best prediction strategy in a given comparison class of (possibly adaptive) prediction strategies, called experts. By using a general loss function, we generalize previous work on universal prediction, forecasting, and data compression. However, here we restrict ourselves to the case when the comparison class is finite. For a given sequence, we define the regret as the total loss on the entire sequence suffered by the adaptive sequential predictor, minus the total loss suffered by the predictor in the comparison class that performs best on that particular sequence. We show that for a large class of loss functions, the minimax regret is either \Theta(log N) or \Omega\Gamma p ` log N ), depending on the loss function, where N is the number of predictors in the comparison class a...
Competitive online statistics
 International Statistical Review
, 1999
"... A radically new approach to statistical modelling, which combines mathematical techniques of Bayesian statistics with the philosophy of the theory of competitive online algorithms, has arisen over the last decade in computer science (to a large degree, under the influence of Dawid’s prequential sta ..."
Abstract

Cited by 63 (10 self)
 Add to MetaCart
A radically new approach to statistical modelling, which combines mathematical techniques of Bayesian statistics with the philosophy of the theory of competitive online algorithms, has arisen over the last decade in computer science (to a large degree, under the influence of Dawid’s prequential statistics). In this approach, which we call “competitive online statistics”, it is not assumed that data are generated by some stochastic mechanism; the bounds derived for the performance of competitive online statistical procedures are guaranteed to hold (and not just hold with high probability or on the average). This paper reviews some results in this area; the new material in it includes the proofs for the performance of the Aggregating Algorithm in the problem of linear regression with square loss. Keywords: Bayes’s rule, competitive online algorithms, linear regression, prequential statistics, worstcase analysis.
Tight WorstCase Loss Bounds for Predicting With Expert Advice
, 1994
"... this paper is somewhat different from the one just described. Assume that there are N experts E i , i = 1; : : : ; N , each trying to predict the outcomes y t as best they can. Let x t;i be the prediction of the ith expert E i about the ..."
Abstract

Cited by 53 (10 self)
 Add to MetaCart
this paper is somewhat different from the one just described. Assume that there are N experts E i , i = 1; : : : ; N , each trying to predict the outcomes y t as best they can. Let x t;i be the prediction of the ith expert E i about the
Universal Algorithmic Intelligence: A mathematical topdown approach
 Artificial General Intelligence
, 2005
"... Artificial intelligence; algorithmic probability; sequential decision theory; rational ..."
Abstract

Cited by 22 (6 self)
 Add to MetaCart
Artificial intelligence; algorithmic probability; sequential decision theory; rational
General Loss Bounds for Universal Sequence Prediction
, 2001
"... The Bayesian framework is ideally suited for induction problems. The probability of observing $x_k$ at time $k$, given past observations $x_1...x_{k1}$ can be computed with Bayes' rule if the true distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. The problem, however, is that in many cas ..."
Abstract

Cited by 14 (9 self)
 Add to MetaCart
The Bayesian framework is ideally suited for induction problems. The probability of observing $x_k$ at time $k$, given past observations $x_1...x_{k1}$ can be computed with Bayes' rule if the true distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. The problem, however, is that in many cases one does not even have a reasonable estimate of the true distribution. In order to overcome this problem a universal distribution $\xi$ is defined as a weighted sum of distributions $\mu_i\in M$, where $M$ is any countable set of distributions including $\mu$. This is a generalization of Solomonoff induction, in which $M$ is the set of all enumerable semimeasures. Systems which predict $y_k$, given $x_1...x_{k1}$ and which receive loss $l_{x_k y_k}$ if $x_k$ is the true next symbol of the sequence are considered. It is proven that using the universal $\xi$ as a prior is nearly as good as using the unknown true distribution $\mu$. Furthermore, games of chance, defined as a sequence of bets, observations, and rewards are studied. The time needed to reach the winning zone is estimated. Extensions to arbitrary alphabets, partial and delayed prediction, and more active systems are discussed.
Simulating Access to Hidden Information while Learning
 Proceedings of the 26th Annual ACM Symposium on the Theory of Computation
, 1994
"... We introduce a new technique which enables a learner without access to hidden information to learn nearly as well as a learner with access to hidden information. We apply our technique to solve an open problem of Maass and Tur'an [18], showing that for any concept class F , the least number of queri ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We introduce a new technique which enables a learner without access to hidden information to learn nearly as well as a learner with access to hidden information. We apply our technique to solve an open problem of Maass and Tur'an [18], showing that for any concept class F , the least number of queries sufficient for learning F by an algorithm which has access only to arbitrary equivalence queries is at most a factor of 1= log 2 (4=3) more than the least number of queries sufficient for learning F by an algorithm which has access to both arbitrary equivalence queries and membership queries. Previously known results imply that the 1= log 2 (4=3) in our bound is best possible. We describe analogous results for two generalizations of this model to function learning, and apply those results to bound the difficulty of learning in the harder of these models in terms of the difficulty of learning in the easier model. We bound the difficulty of learning unions of k concepts from a class F in t...
Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet
 In
, 2002
"... The Bayesian framework is ideally suited for induction problems. The probability of observing $x_t$ at time $t$, given past observations $x_1...x_{t1}$ can be computed with Bayes' rule if the true generating distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. The problem, however, is that ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
The Bayesian framework is ideally suited for induction problems. The probability of observing $x_t$ at time $t$, given past observations $x_1...x_{t1}$ can be computed with Bayes' rule if the true generating distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. The problem, however, is that in many cases one does not even have a reasonable guess of the true distribution. In order to overcome this problem a universal (or mixture) distribution $\xi$ is defined as a weighted sum or integral of distributions $ u\!\in\!\M$, where $\M$ is any countable or continuous set of distributions including $\mu$. This is a generalization of Solomonoff induction, in which $\M$ is the set of all enumerable semimeasures. It is shown for several performance measures that using the universal $\xi$ as a prior is nearly as good as using the unknown true distribution $\mu$. In a sense, this solves the problem of the unknown prior in a universal way. All results are obtained for general finite alphabet. Convergence of $\xi$ to $\mu$ in a conditional mean squared sense and of $\xi/\mu\to 1$ with $\mu$ probability $1$ is proven. The number of additional errors $E_\xi$ made by the optimal universal prediction scheme based on $\xi$ minus the number of errors $E_\mu$ of the optimal informed prediction scheme based on $\mu$ is proven to be bounded by $O(\sqrt{E_\mu})$. The prediction framework is generalized to arbitrary loss functions. A system is allowed to take an action $y_t$, given $x_1...x_{t1}$ and receives loss $\ell_{x_t y_t}$ if $x_t$ is the next symbol of the sequence. No assumptions on $\ell$ are necessary, besides boundedness. Optimal universal $\Lambda_\xi$ and optimal informed $\Lambda_\mu$ prediction schemes are defined and the total loss of $\Lambda_\xi$ is bounded in terms of the total loss of $\Lambda_\mu$, similar to the error bounds. We show that the bounds are tight and that no other predictor can lead to smaller bounds. Furthermore, for various performance measures we show Paretooptimality of $\xi$ in the sense that there is no other predictor which performs better or equal in all environments $ u\in\M$ and strictly better in at least one. So, optimal predictors can (w.r.t.\ to most performance measures in expectation) be based on the mixture $\xi$. Finally we give an Occam's razor argument that Solomonoff's choice $w_ u\sim 2^{K( u)}$ for the weights is optimal, where $K( u)$ is the length of the shortest program describing $ u$. Furthermore, games of chance, defined as a sequence of bets, observations, and rewards are studied. The average profit achieved by the $\Lambda_\xi$ scheme rapidly converges to the best possible profit. The time needed to reach the winning zone is proportional to the relative entropy of $\mu$ and $\xi$. The prediction schemes presented here are compared to the weighted majority algorithm(s). Although the algorithms, the settings, and the proofs are quite different the bounds of both schemes have a very similar structure. Extensions to infinite alphabets, partial, delayed and probabilistic prediction, classification, and more active systems are briefly discussed.