Results 1  10
of
161
Graph visualization and navigation in information visualization: A survey
 IEEE Transactions on Visualization and Computer Graphics
"... ..."
Clustering Gene Expression Patterns
, 1999
"... Recent advances in biotechnology allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. Analysis of data produced by such experiments offers potential insight into gene function and regulatory mechanisms. A key step in the ana ..."
Abstract

Cited by 362 (10 self)
 Add to MetaCart
Recent advances in biotechnology allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. Analysis of data produced by such experiments offers potential insight into gene function and regulatory mechanisms. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. The corresponding algorithmic problem is to cluster multicondition gene expression patterns. In this paper we describe a novel clustering algorithm that was developed for analysis of gene expression data. We define an appropriate stochastic error model on the input, and prove that under the conditions of the model, the algorithm recovers the cluster structure with high probability. The running time of the algorithm on an ngene dataset is O(n 2 (log(n)) c ). We also present a practical heuristic based on the same algorithmic ideas. The heuristic was implemented and its p...
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 286 (0 self)
 Add to MetaCart
(Show Context)
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
InformationTheoretic CoClustering
 In KDD
, 2003
"... Twodimensional contingency or cooccurrence tables arise frequently in important applications such as text, weblog and marketbasket data analysis. A basic problem in contingency table analysis is coclustering: simultaneous clustering of the rows and columns. A novel theoretical formulation views ..."
Abstract

Cited by 270 (10 self)
 Add to MetaCart
Twodimensional contingency or cooccurrence tables arise frequently in important applications such as text, weblog and marketbasket data analysis. A basic problem in contingency table analysis is coclustering: simultaneous clustering of the rows and columns. A novel theoretical formulation views the contingency table as an empirical joint probability distribution of two discrete random variables and poses the coclustering problem as an optimization problem in information theory  the optimal coclustering maximizes the mutual information between the clustered random variables subject to constraints on the number of row and column clusters.
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 249 (0 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such
A Clustering Algorithm based on Graph Connectivity
 Information Processing Letters
, 1999
"... We have developed a novel algorithm for cluster analysis that is based on graph theoretic techniques. ..."
Abstract

Cited by 113 (3 self)
 Add to MetaCart
(Show Context)
We have developed a novel algorithm for cluster analysis that is based on graph theoretic techniques.
Minimum sumsquared residue coclustering of gene expression data
 In SDM
, 2004
"... Microarray experiments have been extensively used for simultaneously measuring DNA expression levels of thousands of genes in genome research. A key step in the analysis of gene expression data is the clustering of genes into groups that show similar expression values over a range of conditions. Sin ..."
Abstract

Cited by 98 (5 self)
 Add to MetaCart
(Show Context)
Microarray experiments have been extensively used for simultaneously measuring DNA expression levels of thousands of genes in genome research. A key step in the analysis of gene expression data is the clustering of genes into groups that show similar expression values over a range of conditions. Since only a small subset of the genes participate in any cellular process of interest, by focusing on subsets of genes and conditions, we can lower the noise induced by other genes and conditions — a cocluster characterizes such a subset of interest. Cheng and Church [3] introduced an effective measure of cocluster quality based on mean squared residue. In this paper, we use two similar squared residue measures and propose two fast kmeans like coclustering algorithms corresponding to the two residue measures. Our algorithms discover k row clusters and l column clusters simultaneously while monotonically decreasing the respective squared residues. Our coclustering algorithms inherit the simplicity, efficiency and wide applicability of the kmeans algorithm. Minimizing the residues may also be formulated as trace optimization problems that allow us to obtain a spectral relaxation that we use for a principled initialization for our iterative algorithms. We further enhance our algorithms by an incremental local search strategy that helps avoid empty clusters and escape poor local minima. We illustrate coclustering results on a yeast cell cycle dataset and a human Bcell lymphoma dataset. Our experiments show that our coclustering algorithms are efficient and are able to discover coherent coclusters. Keywords: Geneexpression, coclustering, biclustering, residue, spectral relaxation
Data Clustering: 50 Years Beyond KMeans
, 2008
"... Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into taxonomic ranks: domain, kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms and m ..."
Abstract

Cited by 83 (3 self)
 Add to MetaCart
Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into taxonomic ranks: domain, kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms and methods for grouping, or clustering, objects according to measured or perceived intrinsic characteristics or similarity. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class labels. The absence of category information distinguishes data clustering (unsupervised learning) from classification or discriminant analysis (supervised learning). The aim of clustering is exploratory in nature to find structure in data. Clustering has a long and rich history in a variety of scientific fields. One of the most popular and simple clustering algorithms, Kmeans, was first published in 1955. In spite of the fact that Kmeans was proposed over 50 years ago and thousands of clustering algorithms have been published since then, Kmeans is still widely used. This speaks to the difficulty of designing a general purpose clustering algorithm and the illposed problem of clustering. We provide a brief overview of clustering, summarize well known clustering methods, discuss the major challenges and key issues in designing clustering algorithms, and point out some of the emerging and useful research directions, including semisupervised clustering, ensemble clustering, simultaneous feature selection, and data clustering and large scale data clustering.
Comparing clusterings: an axiomatic view
 In ICML ’05: Proceedings of the 22nd international conference on Machine learning
, 2005
"... This paper views clusterings as elements of a lattice. Distances between clusterings are analyzed in their relationship to the lattice. From this vantage point, we first give an axiomatic characterization of some criteria for comparing clusterings, including the variation of information and the unad ..."
Abstract

Cited by 73 (3 self)
 Add to MetaCart
This paper views clusterings as elements of a lattice. Distances between clusterings are analyzed in their relationship to the lattice. From this vantage point, we first give an axiomatic characterization of some criteria for comparing clusterings, including the variation of information and the unadjusted Rand index. Then we study other distances between partitions w.r.t these axioms and prove an impossibility result: there is no “sensible” criterion for comparing clusterings that is simultaneously (1) aligned with the lattice of partitions, (2) convexely additive, and (3) bounded. 1.
CLICK and EXPANDER: a system for clustering and visualizing gene expression data
 Bioinformatics
, 2003
"... Motivation: Microarrays have become a central tool in biological research. Their applications range from functional annotation to tissue classification and genetic network inference. A key step in the analysis of gene expression data is the identification of groups of genes that manifest similar exp ..."
Abstract

Cited by 64 (5 self)
 Add to MetaCart
(Show Context)
Motivation: Microarrays have become a central tool in biological research. Their applications range from functional annotation to tissue classification and genetic network inference. A key step in the analysis of gene expression data is the identification of groups of genes that manifest similar expression patterns. This translates to the algorithmic problem of clustering genes based on their expression patterns. Results: We present a novel clustering algorithm, called CLICK, and its applications to gene expression analysis. The algorithm utilizes graphtheoretic and statistical techniques to identify tight groups (kernels) of highly similar elements, which are likely to belong to the same true cluster. Several heuristic procedures are then used to expand the kernels into the full clusters. We report on the application of CLICK to a variety of gene expression data sets. In all those applications it outperformed extant algorithms according to several common figures of merit. We also point out that CLICK can be successfully used for the identification of common regulatory motifs in the upstream regions of coregulated genes. Furthermore, we demonstrate how CLICK can be used to accurately classify tissue samples into disease types, based on their expression profiles. Finally, we present a new javabased graphical tool, called EXPANDER, for gene expression analysis and visualization, which incorporates CLICK and several other popular clustering algorithms.