Results 1  10
of
93
A Guided Tour to Approximate String Matching
 ACM Computing Surveys
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract

Cited by 404 (38 self)
 Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining the problem and its relevance, its statistical behavior, its history and current developments, and the central ideas of the algorithms and their complexities. We present a number of experiments to compare the performance of the different algorithms and show which are the best choices according to each case. We conclude with some future work directions and open problems. 1
OnLine Construction of Suffix Trees
, 1995
"... An online algorithm is presented for constructing the suffix tree for a given string in time linear in the length of the string. The new algorithm has the desirable property of processing the string symbol by symbol from left to right. It has always the suffix tree for the scanned part of the strin ..."
Abstract

Cited by 327 (2 self)
 Add to MetaCart
An online algorithm is presented for constructing the suffix tree for a given string in time linear in the length of the string. The new algorithm has the desirable property of processing the string symbol by symbol from left to right. It has always the suffix tree for the scanned part of the string ready. The method is developed as a lineartime version of a very simple algorithm for (quadratic size) suffix tries. Regardless of its quadratic worstcase this latter algorithm can be a good practical method when the string is not too long. Another variation of this method is shown to give in a natural way the wellknown algorithms for constructing suffix automata (DAWGs).
Compressed fulltext indexes
 ACM COMPUTING SURVEYS
, 2007
"... Fulltext indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text l ..."
Abstract

Cited by 173 (78 self)
 Add to MetaCart
Fulltext indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text length. This concept has evolved into selfindexes, which in addition contain enough information to reproduce any text portion, so they replace the text. The exciting possibility of an index that takes space close to that of the compressed text, replaces it, and in addition provides fast search over it, has triggered a wealth of activity and produced surprising results in a very short time, and radically changed the status of this area in less than five years. The most successful indexes nowadays are able to obtain almost optimal space and search time simultaneously. In this paper we present the main concepts underlying selfindexes. We explain the relationship between text entropy and regularities that show up in index structures and permit compressing them. Then we cover the most relevant selfindexes up to date, focusing on the essential aspects on how they exploit the text compressibility and how they solve efficiently various search problems. We aim at giving the theoretical background to understand and follow the developments in this area.
The String BTree: A New Data Structure for String Search in External Memory and its Applications.
 Journal of the ACM
, 1998
"... We introduce a new textindexing data structure, the String BTree, that can be seen as a link between some traditional externalmemory and stringmatching data structures. In a short phrase, it is a combination of Btrees and Patricia tries for internalnode indices that is made more effective by a ..."
Abstract

Cited by 122 (12 self)
 Add to MetaCart
We introduce a new textindexing data structure, the String BTree, that can be seen as a link between some traditional externalmemory and stringmatching data structures. In a short phrase, it is a combination of Btrees and Patricia tries for internalnode indices that is made more effective by adding extra pointers to speed up search and update operations. Consequently, the String BTree overcomes the theoretical limitations of inverted files, Btrees, prefix Btrees, suffix arrays, compacted tries and suffix trees. String Btrees have the same worstcase performance as Btrees but they manage unboundedlength strings and perform much more powerful search operations such as the ones supported by suffix trees. String Btrees are also effective in main memory (RAM model) because they improve the online suffix tree search on a dynamic set of strings. They also can be successfully applied to database indexing and software duplication.
Reducing the Space Requirement of Suffix Trees
 Software – Practice and Experience
, 1999
"... We show that suffix trees store various kinds of redundant information. We exploit these redundancies to obtain more space efficient representations. The most space efficient of our representations requires 20 bytes per input character in the worst case, and 10.1 bytes per input character on average ..."
Abstract

Cited by 118 (10 self)
 Add to MetaCart
We show that suffix trees store various kinds of redundant information. We exploit these redundancies to obtain more space efficient representations. The most space efficient of our representations requires 20 bytes per input character in the worst case, and 10.1 bytes per input character on average for a collection of 42 files of different type. This is an advantage of more than 8 bytes per input character over previous work. Our representations can be constructed without extra space, and as fast as previous representations. The asymptotic running times of suffix tree applications are retained. Copyright © 1999 John Wiley & Sons, Ltd. KEY WORDS: data structures; suffix trees; implementation techniques; space reduction
Fast and Intuitive Clustering of Web Documents
 In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining
, 1997
"... Conventional document retrieval systems (e.g., Alta Vista) return long lists of ranked documents in response to user queries. Recently, document clustering has been put forth as an alternative method of organizing retrieval results (Cutting et al. 1992). A person browsing the clusters can discover ..."
Abstract

Cited by 101 (2 self)
 Add to MetaCart
Conventional document retrieval systems (e.g., Alta Vista) return long lists of ranked documents in response to user queries. Recently, document clustering has been put forth as an alternative method of organizing retrieval results (Cutting et al. 1992). A person browsing the clusters can discover patterns that could be overlooked in the traditional presentation. This paper describes two novel clustering methods that intersect the documents in a cluster to determine the set of words (or phrases) shared by all the documents in the cluster. We report on experiments that evaluate these intersectionbased clustering methods on collections of snippets returned from Web search engines. First, we show that wordintersection clustering produces superior clusters and does so faster than standard techniques. Second, we show that our O(n log n) time phraseintersection clustering method produces comparable clusters and does so more than two orders of magnitude faster than all methods tested. I...
From Ukkonen to McCreight and Weiner: A Unifying View of LinearTime Suffix Tree Construction
 Algorithmica
, 1997
"... We review the linear time suffix tree constructions by Weiner, McCreight, and Ukkonen. We use the terminology of the most recent algorithm, Ukkonen's online construction, to explain its historic predecessors. This reveals relationships much closer than one would expect, since the three algorithms ar ..."
Abstract

Cited by 66 (6 self)
 Add to MetaCart
We review the linear time suffix tree constructions by Weiner, McCreight, and Ukkonen. We use the terminology of the most recent algorithm, Ukkonen's online construction, to explain its historic predecessors. This reveals relationships much closer than one would expect, since the three algorithms are based on rather different intuitive ideas. Moreover, it completely explains the differences between these algorithms in terms of simplicity, efficiency, and implementation complexity.
Indexing Text using the ZivLempel Trie
 Journal of Discrete Algorithms
, 2002
"... Let a text of u characters over an alphabet of size be compressible to n symbols by the LZ78 or LZW algorithm. We show that it is possible to build a data structure based on the ZivLempel trie that takes 4n log 2 n(1+o(1)) bits of space and reports the R occurrences of a pattern of length m in ..."
Abstract

Cited by 64 (43 self)
 Add to MetaCart
Let a text of u characters over an alphabet of size be compressible to n symbols by the LZ78 or LZW algorithm. We show that it is possible to build a data structure based on the ZivLempel trie that takes 4n log 2 n(1+o(1)) bits of space and reports the R occurrences of a pattern of length m in worst case time O(m log(m)+(m+R)log n).
Succinct suffix arrays based on runlength encoding
 Nordic Journal of Computing
, 2005
"... A succinct fulltext selfindex is a data structure built on a text T = t1t2...tn, which takes little space (ideally close to that of the compressed text), permits efficient search for the occurrences of a pattern P = p1p2... pm in T, and is able to reproduce any text substring, so the selfindex re ..."
Abstract

Cited by 53 (32 self)
 Add to MetaCart
A succinct fulltext selfindex is a data structure built on a text T = t1t2...tn, which takes little space (ideally close to that of the compressed text), permits efficient search for the occurrences of a pattern P = p1p2... pm in T, and is able to reproduce any text substring, so the selfindex replaces the text. Several remarkable selfindexes have been developed in recent years. Many of those take space proportional to nH0 or nHk bits, where Hk is the kth order empirical entropy of T. The time to count how many times does P occur in T ranges from O(m) to O(m log n). In this paper we present a new selfindex, called RLFM index for “runlength FMindex”, that counts the occurrences of P in T in O(m) time when the alphabet size is σ = O(polylog(n)). The RLFM index requires nHk log σ + O(n) bits of space, for any k ≤ α log σ n and constant 0 < α < 1. Previous indexes that achieve O(m) counting time either require more than nH0 bits of space or require that σ = O(1). We also show that the RLFM index can be enhanced to locate occurrences in the text and display text substrings in time independent of σ. In addition, we prove a close relationship between the kth order entropy of the text and some regularities that show up in their suffix arrays and in the BurrowsWheeler transform of T. This relationship is of independent interest and permits bounding the space occupancy of the RLFM index, as well as that of other existing compressed indexes. Finally, we present some practical considerations in order to implement the RLFM index, obtaining two implementations with different spacetime tradeoffs. We empirically compare our indexes against the best existing implementations and show that they are practical and competitive against those. 1