Results 1  10
of
27
Learning Bayesian networks: The combination of knowledge and statistical data
 Machine Learning
, 1995
"... We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simpl ..."
Abstract

Cited by 913 (38 self)
 Add to MetaCart
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simplify the encoding of a user’s prior knowledge. In particular, a user can express his knowledge—for the most part—as a single prior Bayesian network for the domain. 1
A Tutorial on Learning Bayesian Networks
 Communications of the ACM
, 1995
"... We examine a graphical representation of uncertain knowledge called a Bayesian network. The representation is easy to construct and interpret, yet has formal probabilistic semantics making it suitable for statistical manipulation. We show how we can use the representation to learn new knowledge by c ..."
Abstract

Cited by 299 (13 self)
 Add to MetaCart
We examine a graphical representation of uncertain knowledge called a Bayesian network. The representation is easy to construct and interpret, yet has formal probabilistic semantics making it suitable for statistical manipulation. We show how we can use the representation to learn new knowledge by combining domain knowledge with statistical data. 1 Introduction Many techniques for learning rely heavily on data. In contrast, the knowledge encoded in expert systems usually comes solely from an expert. In this paper, we examine a knowledge representation, called a Bayesian network, that lets us have the best of both worlds. Namely, the representation allows us to learn new knowledge by combining expert domain knowledge and statistical data. A Bayesian network is a graphical representation of uncertain knowledge that most people find easy to construct and interpret. In addition, the representation has formal probabilistic semantics, making it suitable for statistical manipulation (Howard,...
A Bayesian Approach to Causal Discovery
, 1997
"... We examine the Bayesian approach to the discovery of directed acyclic causal models and compare it to the constraintbased approach. Both approaches rely on the Causal Markov assumption, but the two differ significantly in theory and practice. An important difference between the approaches is that t ..."
Abstract

Cited by 79 (1 self)
 Add to MetaCart
We examine the Bayesian approach to the discovery of directed acyclic causal models and compare it to the constraintbased approach. Both approaches rely on the Causal Markov assumption, but the two differ significantly in theory and practice. An important difference between the approaches is that the constraintbased approach uses categorical information about conditionalindependence constraints in the domain, whereas the Bayesian approach weighs the degree to which such constraints hold. As a result, the Bayesian approach has three distinct advantages over its constraintbased counterpart. One, conclusions derived from the Bayesian approach are not susceptible to incorrect categorical decisions about independence facts that can occur with data sets of finite size. Two, using the Bayesian approach, finer distinctions among model structuresboth quantitative and qualitativecan be made. Three, information from several models can be combined to make better inferences and to better ...
Accounting for Model Uncertainty in Survival Analysis Improves Predictive Performance
 In Bayesian Statistics 5
, 1995
"... Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significanc ..."
Abstract

Cited by 39 (12 self)
 Add to MetaCart
Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significance tests to select a single model, and then to make inference conditionally on the selected model. However, this ignores model uncertainty, which can be substantial. We review the standard Bayesian model averaging solution to this problem and extend it to survival analysis, introducing partial Bayes factors to do so for the Cox proportional hazards model. In two examples, taking account of model uncertainty enhances predictive performance, to an extent that could be clinically useful. 1 Introduction From 1974 to 1984 the Mayo Clinic conducted a doubleblinded randomized clinical trial involving 312 patients to compare the drug DPCA with a placebo in the treatment of primary biliary cirrhosis...
Engineering Design Thinking, Teaching, and Learning
 JOURNAL OF ENGINEERING EDUCATION
, 2005
"... This paper is based on the premises that the purpose of engineering education is to graduate engineers who can design, and that design thinking is complex. The paper begins by briefly reviewing the history and role of design in the engineering curriculum. Several dimensions of design thinking are th ..."
Abstract

Cited by 37 (4 self)
 Add to MetaCart
This paper is based on the premises that the purpose of engineering education is to graduate engineers who can design, and that design thinking is complex. The paper begins by briefly reviewing the history and role of design in the engineering curriculum. Several dimensions of design thinking are then detailed, explaining why design is hard to learn and harder still to teach, and outlining the research available on how well design thinking skills are learned. The currently mostfavored pedagogical model for teaching design, projectbased learning (PBL), is explored next, along with available assessment data on its success. Two contexts for PBL are emphasized: firstyear cornerstone courses and globally dispersed PBL courses. Finally, the paper lists some of the open research questions that must be answered to identify the best pedagogical practices of improving design learning, after which it closes by making recommendations for research aimed at enhancing design learning.
Learning Probabilistic Networks
 THE KNOWLEDGE ENGINEERING REVIEW
, 1998
"... A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combini ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combining prior knowledge, which might be limited solely to experience of the influences between some of the variables of interest, and data. In this paper, we first show how data can be used to revise initial estimates of the parameters of a model. We then progress to showing how the structure of the model can be revised as data is obtained. Techniques for learning with incomplete data are also covered.
Statistical Methods for Eliciting Probability Distributions
 Journal of the American Statistical Association
, 2005
"... Elicitation is a key task for subjectivist Bayesians. While skeptics hold that it cannot (or perhaps should not) be done, in practice it brings statisticians closer to their clients and subjectmatterexpert colleagues. This paper reviews the stateoftheart, reflecting the experience of statisticia ..."
Abstract

Cited by 32 (1 self)
 Add to MetaCart
Elicitation is a key task for subjectivist Bayesians. While skeptics hold that it cannot (or perhaps should not) be done, in practice it brings statisticians closer to their clients and subjectmatterexpert colleagues. This paper reviews the stateoftheart, reflecting the experience of statisticians informed by the fruits of a long line of psychological research into how people represent uncertain information cognitively, and how they respond to questions about that information. In a discussion of the elicitation process, the first issue to address is what it means for an elicitation to be successful, i.e. what criteria should be employed? Our answer is that a successful elicitation faithfully represents the opinion of the person being elicited. It is not necessarily “true ” in some objectivistic sense, and cannot be judged that way. We see elicitation as simply part of the process of statistical modeling. Indeed in a hierarchical model it is ambiguous at which point the likelihood ends and the prior begins. Thus the same kinds of judgment that inform statistical modeling in general also inform elicitation of prior distributions.
Aggregating disparate estimates of chance
, 2004
"... We consider a panel of experts asked to assign probabilities to events, both logically simple and complex. The events evaluated by different experts are based on overlapping sets of variables but may otherwise be distinct. The union of all the judgments will likely be probabilistic incoherent. We ad ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
We consider a panel of experts asked to assign probabilities to events, both logically simple and complex. The events evaluated by different experts are based on overlapping sets of variables but may otherwise be distinct. The union of all the judgments will likely be probabilistic incoherent. We address the problem of revising the probability estimates of the panel so as to produce a coherent set that best represents the group’s expertise.
Enhancing the Predictive Performance of Bayesian Graphical Models
 Communications in Statistics – Theory and Methods
, 1995
"... Both knowledgebased systems and statistical models are typically concerned with making predictions about future observables. Here we focus on assessment of predictive performance and provide two techniques for improving the predictive performance of Bayesian graphical models. First, we present Baye ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
Both knowledgebased systems and statistical models are typically concerned with making predictions about future observables. Here we focus on assessment of predictive performance and provide two techniques for improving the predictive performance of Bayesian graphical models. First, we present Bayesian model averaging, a technique for accounting for model uncertainty. Second, we describe a technique for eliciting a prior distribution for competing models from domain experts. We explore the predictive performance of both techniques in the context of a urological diagnostic problem. KEYWORDS: Prediction; Bayesian graphical model; Bayesian network; Decomposable model; Model uncertainty; Elicitation. 1 Introduction Both statistical methods and knowledgebased systems are typically concerned with combining information from various sources to make inferences about prospective measurements. Inevitably, to combine information, we must make modeling assumptions. It follows that we should car...