Results 1  10
of
301
A Survey of Computer VisionBased Human Motion Capture
 Computer Vision and Image Understanding
, 2001
"... A comprehensive survey of computer visionbased human motion capture literature from the past two decades is presented. The focus is on a general overview based on a taxonomy of system functionalities, broken down into four processes: initialization, tracking, pose estimation, and recognition. Each ..."
Abstract

Cited by 394 (14 self)
 Add to MetaCart
A comprehensive survey of computer visionbased human motion capture literature from the past two decades is presented. The focus is on a general overview based on a taxonomy of system functionalities, broken down into four processes: initialization, tracking, pose estimation, and recognition. Each process is discussed and divided into subprocesses and/or categories of methods to provide a reference to describe and compare the more than 130 publications covered by the survey. References are included throughout the paper to exemplify important issues and their relations to the various methods. A number of general assumptions used in this research field are identified and the character of these assumptions indicates that the research field is still in an early stage of development. To evaluate the state of the art, the major application areas are identified and performances are analyzed in light of the methods
Unsupervised learning of finite mixture models
 IEEE Transactions on pattern analysis and machine intelligence
, 2002
"... AbstractÐThis paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectationmaximization ..."
Abstract

Cited by 267 (20 self)
 Add to MetaCart
AbstractÐThis paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectationmaximization (EM) algorithm, it does not require careful initialization. The proposed method also avoids another drawback of EM for mixture fitting: the possibility of convergence toward a singular estimate at the boundary of the parameter space. The novelty of our approach is that we do not use a model selection criterion to choose one among a set of preestimated candidate models; instead, we seamlessly integrate estimation and model selection in a single algorithm. Our technique can be applied to any type of parametric mixture model for which it is possible to write an EM algorithm; in this paper, we illustrate it with experiments involving Gaussian mixtures. These experiments testify for the good performance of our approach. Index TermsÐFinite mixtures, unsupervised learning, model selection, minimum message length criterion, Bayesian methods, expectationmaximization algorithm, clustering. æ 1
An EM Algorithm for WaveletBased Image Restoration
, 2002
"... This paper introduces an expectationmaximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with lowcomplexity, expressed in terms of the wavelet coecients, taking a ..."
Abstract

Cited by 233 (21 self)
 Add to MetaCart
This paper introduces an expectationmaximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with lowcomplexity, expressed in terms of the wavelet coecients, taking advantage of the well known sparsity of wavelet representations. Previous works have investigated waveletbased restoration but, except for certain special cases, the resulting criteria are solved approximately or require very demanding optimization methods. The EM algorithm herein proposed combines the efficient image representation oered by the discrete wavelet transform (DWT) with the diagonalization of the convolution operator obtained in the Fourier domain. The algorithm alternates between an Estep based on the fast Fourier transform (FFT) and a DWTbased Mstep, resulting in an ecient iterative process requiring O(N log N) operations per iteration. Thus, it is the rst image restoration algorithm that optimizes a waveletbased penalized likelihood criterion and has computational complexity comparable to that of standard wavelet denoising or frequency domain deconvolution methods. The convergence behavior of the algorithm is investigated, and it is shown that under mild conditions the algorithm converges to a globally optimal restoration. Moreover, our new approach outperforms several of the best existing methods in benchmark tests, and in some cases is also much less computationally demanding.
From HMM's to Segment Models: A Unified View of Stochastic Modeling for Speech Recognition
, 1996
"... ..."
Sparse Reconstruction by Separable Approximation
, 2008
"... Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution and reconstruction, and compressed sensing ( ..."
Abstract

Cited by 168 (27 self)
 Add to MetaCart
Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution and reconstruction, and compressed sensing (CS) are a few wellknown areas in which problems of this type appear. One standard approach is to minimize an objective function that includes a quadratic (ℓ2) error term added to a sparsityinducing (usually ℓ1) regularization term. We present an algorithmic framework for the more general problem of minimizing the sum of a smooth convex function and a nonsmooth, possibly nonconvex regularizer. We propose iterative methods in which each step is obtained by solving an optimization subproblem involving a quadratic term with diagonal Hessian (which is therefore separable in the unknowns) plus the original sparsityinducing regularizer. Our approach is suitable for cases in which this subproblem can be solved much more rapidly than the original problem. In addition to solving the standard ℓ2 − ℓ1 case, our framework yields an efficient solution technique for other regularizers, such as an ℓ∞norm regularizer and groupseparable (GS) regularizers. It also generalizes immediately to the case in which the data is complex rather than real. Experiments with CS problems show that our approach is competitive with the fastest known methods for the standard ℓ2 − ℓ1 problem, as well as being efficient on problems with other separable regularization terms.
Contrastive estimation: Training loglinear models on unlabeled data
 In Proc. of ACL
, 2005
"... Conditional random fields (Lafferty et al., 2001) are quite effective at sequence labeling tasks like shallow parsing (Sha and Pereira, 2003) and namedentity extraction (McCallum and Li, 2003). CRFs are loglinear, allowing the incorporation of arbitrary features into the model. To train on unlabele ..."
Abstract

Cited by 115 (14 self)
 Add to MetaCart
Conditional random fields (Lafferty et al., 2001) are quite effective at sequence labeling tasks like shallow parsing (Sha and Pereira, 2003) and namedentity extraction (McCallum and Li, 2003). CRFs are loglinear, allowing the incorporation of arbitrary features into the model. To train on unlabeled data, we require unsupervised estimation methods for loglinear models; few exist. We describe a novel approach, contrastive estimation. We show that the new technique can be intuitively understood as exploiting implicit negative evidence and is computationally efficient. Applied to a sequence labeling problem—POS tagging given a tagging dictionary and unlabeled text—contrastive estimation outperforms EM (with the same feature set), is more robust to degradations of the dictionary, and can largely recover by modeling additional features. 1
Sparse multinomial logistic regression: fast algorithms and generalization bounds
 IEEE Trans. on Pattern Analysis and Machine Intelligence
"... Abstract—Recently developed methods for learning sparse classifiers are among the stateoftheart in supervised learning. These methods learn classifiers that incorporate weighted sums of basis functions with sparsitypromoting priors encouraging the weight estimates to be either significantly larg ..."
Abstract

Cited by 113 (1 self)
 Add to MetaCart
Abstract—Recently developed methods for learning sparse classifiers are among the stateoftheart in supervised learning. These methods learn classifiers that incorporate weighted sums of basis functions with sparsitypromoting priors encouraging the weight estimates to be either significantly large or exactly zero. From a learningtheoretic perspective, these methods control the capacity of the learned classifier by minimizing the number of basis functions used, resulting in better generalization. This paper presents three contributions related to learning sparse classifiers. First, we introduce a true multiclass formulation based on multinomial logistic regression. Second, by combining a bound optimization approach with a componentwise update procedure, we derive fast exact algorithms for learning sparse multiclass classifiers that scale favorably in both the number of training samples and the feature dimensionality, making them applicable even to large data sets in highdimensional feature spaces. To the best of our knowledge, these are the first algorithms to perform exact multinomial logistic regression with a sparsitypromoting prior. Third, we show how nontrivial generalization bounds can be derived for our classifier in the binary case. Experimental results on standard benchmark data sets attest to the accuracy, sparsity, and efficiency of the proposed methods.
THE EFFECT OF UNLABELED SAMPLES IN REDUCING THE SMALL SAMPLE SIZE PROBLEM AND MITIGATING THE HUGHES PHENOMENON
, 1994
"... ..."
Speaker Adaptation Using Constrained Estimation of Gaussian Mixtures
 IEEE Transactions on Speech and Audio Processing
, 1995
"... A recent trend in automatic speech recognition systems is the use of continuous mixturedensity hidden Markov models (HMMs). Despite the good recognition performance that these systems achieve on average in large vocabulary applications, there is a large variability in performance across speakers. P ..."
Abstract

Cited by 90 (2 self)
 Add to MetaCart
A recent trend in automatic speech recognition systems is the use of continuous mixturedensity hidden Markov models (HMMs). Despite the good recognition performance that these systems achieve on average in large vocabulary applications, there is a large variability in performance across speakers. Performance degrades dramatically when the user is radically different from the training population. A popular technique that can improve the performance and robustness of a speech recognition system is adapting speech models to the speaker, and more generally to the channel and the task. In continuous mixturedensity HMMs the number of component densities is typically very large, and it may not be feasible to acquire a sufficient amount of adaptation data for robust maximumlikelihood estimates. To solve this problem, we propose a constrained estimation technique for Gaussian mixture densities. The algorithm is evaluated on the largevocabulary Wall Street Journal corpus for both ...
Support vector machines for speech recognition
 Proceedings of the International Conference on Spoken Language Processing
, 1998
"... Statistical techniques based on hidden Markov Models (HMMs) with Gaussian emission densities have dominated signal processing and pattern recognition literature for the past 20 years. However, HMMs trained using maximum likelihood techniques suffer from an inability to learn discriminative informati ..."
Abstract

Cited by 74 (2 self)
 Add to MetaCart
Statistical techniques based on hidden Markov Models (HMMs) with Gaussian emission densities have dominated signal processing and pattern recognition literature for the past 20 years. However, HMMs trained using maximum likelihood techniques suffer from an inability to learn discriminative information and are prone to overfitting and overparameterization. Recent work in machine learning has focused on models, such as the support vector machine (SVM), that automatically control generalization and parameterization as part of the overall optimization process. In this paper, we show that SVMs provide a significant improvement in performance on a static pattern classification task based on the Deterding vowel data. We also describe an application of SVMs to large vocabulary speech recognition, and demonstrate an improvement in error rate on a continuous alphadigit task (OGI Aphadigits) and a large vocabulary conversational speech task (Switchboard). Issues related to the development and optimization of an SVM/HMM hybrid system are discussed.