Results 1  10
of
143
Decoherence, einselection, and the quantum origins of the classical
 REVIEWS OF MODERN PHYSICS 75, 715. AVAILABLE ONLINE AT HTTP://ARXIV.ORG/ABS/QUANTPH/0105127
, 2003
"... The manner in which states of some quantum systems become effectively classical is of great significance for the foundations of quantum physics, as well as for problems of practical interest such as quantum engineering. In the past two decades it has become increasingly clear that many (perhaps all) ..."
Abstract

Cited by 116 (1 self)
 Add to MetaCart
(Show Context)
The manner in which states of some quantum systems become effectively classical is of great significance for the foundations of quantum physics, as well as for problems of practical interest such as quantum engineering. In the past two decades it has become increasingly clear that many (perhaps all) of the symptoms of classicality can be induced in quantum systems by their environments. Thus decoherence is caused by the interaction in which the environment in effect monitors certain observables of the system, destroying coherence between the pointer states corresponding to their eigenvalues. This leads to environmentinduced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly nonlocal "Schrödingercat states." The classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit. Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation. Only the preferred pointer observable of the apparatus can store information
A topos perspective on the KochenSpecker Theorem: I. Quantum States . . .
, 1998
"... Any attempt to construct a realist interpretation of quantum theory founders on the KochenSpecker theorem, which asserts the impossibility of assigning values to quantum quantities in a way that preserves functional relations between them. We construct a new type of valuation which is defined on al ..."
Abstract

Cited by 116 (20 self)
 Add to MetaCart
(Show Context)
Any attempt to construct a realist interpretation of quantum theory founders on the KochenSpecker theorem, which asserts the impossibility of assigning values to quantum quantities in a way that preserves functional relations between them. We construct a new type of valuation which is defined on all operators, and which respects an appropriate version of the functional composition principle. The truthvalues assigned to propositions are (i) contextual; and (ii) multivalued, where the space of contexts and the multivalued logic for each context come naturally from the topos theory of presheaves. The first step in our theory is to demonstrate that the KochenSpecker theorem is equivalent to the statement that a certain presheaf
Quantum mechanics as quantum information (and only a little more), Quantum Theory: Reconsideration of Foundations
, 2002
"... In this paper, I try once again to cause some goodnatured trouble. The issue remains, when will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations? The suspicion is expressed that no end will be in sight until a means is found to reduce quantum theory to two or ..."
Abstract

Cited by 113 (8 self)
 Add to MetaCart
(Show Context)
In this paper, I try once again to cause some goodnatured trouble. The issue remains, when will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations? The suspicion is expressed that no end will be in sight until a means is found to reduce quantum theory to two or three statements of crisp physical (rather than abstract, axiomatic) significance. In this regard, no tool appears better calibrated for a direct assault than quantum information theory. Far from a strained application of the latest fad to a timehonored problem, this method holds promise precisely because a large part—but not all—of the structure of quantum theory has always concerned information. It is just that the physics community needs reminding. This paper, though takingquantph/0106166 as its core, corrects one mistake and offers several observations beyond the previous version. In particular, I identify one element of quantum mechanics that I would not label a subjective term in the theory—it is the integer parameter D traditionally ascribed to a quantum system via its Hilbertspace dimension. 1
Between classical and quantum
, 2008
"... The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, inclu ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
(Show Context)
The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. For example, we sketch how certain intuitive ideas of the founders of quantum theory have fared in the light of current mathematical knowledge. One such idea that has certainly stood the test of time is Heisenberg’s ‘quantumtheoretical Umdeutung (reinterpretation) of classical observables’, which lies at the basis of quantization theory. Similarly, Bohr’s correspondence principle (in somewhat revised form) and Schrödinger’s wave packets (or coherent states) continue to be of great importance in understanding classical behaviour from quantum mechanics. On the other hand, no consensus has been reached on the Copenhagen Interpretation, but in view of the parodies of it one typically finds in the literature we describe it in detail. On the assumption that quantum mechanics is universal and complete, we discuss three ways in which classical physics has so far been believed to emerge from quantum physics, namely
A Topos for Algebraic Quantum Theory
 COMMUNICATIONS IN MATHEMATICAL PHYSICS
, 2009
"... The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C ..."
Abstract

Cited by 32 (4 self)
 Add to MetaCart
The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C*algebra of observables A induces a topos T (A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*algebra A. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum �(A) in T (A), which in our approach plays the role of the quantum phase space of the system. Thus we associate a locale (which is the topostheoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on �, and selfadjoint elements of A define continuous functions (more precisely, locale maps) from � to Scott’s interval domain. Noting that open subsets of �(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T (A). These results were inspired by the topostheoretic approach to quantum physics proposed by Butterfield and Isham, as recently generalized by Döring and Isham.
Solving the Measurement Problem: de BroglieBohm loses out to Everett
 FOUNDATIONS OF PHYSICS
, 2005
"... The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation. ..."
Abstract

Cited by 28 (3 self)
 Add to MetaCart
The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.
Quantum Information Theory and the Foundations of Quantum Mechanics
, 2004
"... This thesis is a contribution to the debate on the implications of quantum information theory for the foundational problems of quantum mechanics. In Part I an attempt is made to shed some light on the nature of information and quantum information theory. It is emphasized that the everyday notion of ..."
Abstract

Cited by 28 (7 self)
 Add to MetaCart
This thesis is a contribution to the debate on the implications of quantum information theory for the foundational problems of quantum mechanics. In Part I an attempt is made to shed some light on the nature of information and quantum information theory. It is emphasized that the everyday notion of information is to be firmly distinguished from the technical notions arising in information theory; noun, hence does not refer to a particular or substance. The popular claim ‘Information is Physical ’ is assessed and it is argued that this proposition faces a destructive dilemma. Accordingly, the slogan may not be understood as an ontological claim, but at best, as a methodological one. A novel argument is provided against Dretske’s (1981) attempt to base a semantic notion of information on ideas from information theory. The function of various measures of information content for quantum systems is explored and the applicability of the Shannon information in the quantum context maintained against the challenge of Brukner and Zeilinger (2001). The phenomenon of quantum teleportation is then explored as a case study serving to emphasize the value of
Why the Quantum?
, 2004
"... This paper is a commentary on the foundational significance of the CliftonBubHalvorson theorem characterizing quantum theory in terms of three informationtheoretic constraints. I argue that: (1) a quantum theory is best understood as a theory about the possibilities and impossibilities of informa ..."
Abstract

Cited by 25 (1 self)
 Add to MetaCart
This paper is a commentary on the foundational significance of the CliftonBubHalvorson theorem characterizing quantum theory in terms of three informationtheoretic constraints. I argue that: (1) a quantum theory is best understood as a theory about the possibilities and impossibilities of information transfer, as opposed to a theory about the mechanics of nonclassical waves or particles, (2) given the informationtheoretic constraints, any mechanical theory of quantum phenomena that includes an account of the measuring instruments that reveal these phenomena must be empirically equivalent to a quantum theory, and (3) assuming the informationtheoretic constraints are in fact satisfied in our world, no mechanical theory of quantum phenomena that includes an account of measurement interactions can be acceptable, and the appropriate aim of physics at the fundamental level then becomes the representation and manipulation of information.
Betting on the outcomes of measurements: a Bayesian theory of quantum probability
, 2003
"... We develop a systematic approach to quantum probability as a theory of rational bettingin quantum gambles. In these games of chance, the agent is betting in advance on the outcomes of several (finitely many) incompatible measurements. One of the measurements is subsequently chosen and performed and ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
We develop a systematic approach to quantum probability as a theory of rational bettingin quantum gambles. In these games of chance, the agent is betting in advance on the outcomes of several (finitely many) incompatible measurements. One of the measurements is subsequently chosen and performed and the money placed on the other measurements is returned to the agent. We show how the rules of rational betting imply all the interesting features of quantum probability, even in such finite gambles. These include the uncertainty principle and the violation of Bell’s inequality amongothers. Quantum gambles are closely related to quantum logic and provide a new semantics for it. We conclude with a philosophical discussion on the interpretation of quantum mechanics.
The Modal Interpretation of Quantum Mechanics
, 1998
"... Modal interpretations have the ambition to construe quantum mechanics as an objective, manindependent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix physical reality but yields probabilities. In working out these ideas an importa ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
(Show Context)
Modal interpretations have the ambition to construe quantum mechanics as an objective, manindependent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix physical reality but yields probabilities. In working out these ideas an important motif is to stay close to the standard formalism of quantum mechanics and to refrain from introducing new structure by hand. In this paper we explain how this programme can be made concrete. In particular, we show that the Born probability rule, and sets of definitevalued observables to which the Born probabilities pertain, can be uniquely defined from the quantum state and Hilbert space structure. We discuss the status of probability in modal interpretations, and to this end we make a comparison with manyworlds alternatives. An overall point that we stress is that the modal ideas define a general framework and research programme rather than one definite and finished interpretation. Key words: interpretation of quantum mechanics; modal interpretation; probability; many worlds