Results 1  10
of
599
A Fast and Elitist MultiObjective Genetic Algorithm: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing param ..."
Abstract

Cited by 1707 (58 self)
 Add to MetaCart
(Show Context)
Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing parameter. In this paper, we suggest a nondominated sorting based multiobjective evolutionary algorithm (we called it the Nondominated Sorting GAII or NSGAII) which alleviates all the above three difficulties. Specifically, a fast nondominated sorting approach with O(MN ) computational complexity is presented. Second, a selection operator is presented which creates a mating pool by combining the parent and child populations and selecting the best (with respect to fitness and spread) N solutions. Simulation results on a number of difficult test problems show that the proposed NSGAII, in most problems, is able to find much better spread of solutions and better convergence near the true Paretooptimal front compared to PAES and SPEA  two other elitist multiobjective EAs which pay special attention towards creating a diverse Paretooptimal front. Moreover, we modify the definition of dominance in order to solve constrained multiobjective problems eciently. Simulation results of the constrained NSGAII on a number of test problems, including a fiveobjective, sevenconstraint nonlinear problem, are compared with another constrained multiobjective optimizer and much better performance of NSGAII is observed. Because of NSGAII's low computational requirements, elitist approach, parameterless niching approach, and simple constrainthandling strategy, NSGAII should find increasing applications in the coming years.
Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 1999
"... Evolutionary algorithms (EA’s) are often wellsuited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a singl ..."
Abstract

Cited by 781 (22 self)
 Add to MetaCart
(Show Context)
Evolutionary algorithms (EA’s) are often wellsuited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a single run. However, the few comparative studies of different methods presented up to now remain mostly qualitative and are often restricted to a few approaches. In this paper, four multiobjective EA’s are compared quantitatively where an extended 0/1 knapsack problem is taken as a basis. Furthermore, we introduce a new evolutionary approach to multicriteria optimization, the Strength Pareto EA (SPEA), that combines several features of previous multiobjective EA’s in a unique manner. It is characterized by a) storing nondominated solutions externally in a second, continuously updated population, b) evaluating an individual’s fitness dependent on the number of external nondominated points that dominate it, c) preserving population diversity using the Pareto dominance relationship, and d) incorporating a clustering procedure in order to reduce the nondominated set without destroying its characteristics. The proofofprinciple results obtained on two artificial problems as well as a larger problem, the synthesis of a digital hardware–software multiprocessor system, suggest that SPEA can be very effective in sampling from along the entire Paretooptimal front and distributing the generated solutions over the tradeoff surface. Moreover, SPEA clearly outperforms the other four multiobjective EA’s on the 0/1 knapsack problem.
SPEA2: Improving the Strength Pareto Evolutionary Algorithm
, 2001
"... The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Paretooptimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very ..."
Abstract

Cited by 673 (19 self)
 Add to MetaCart
(Show Context)
The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Paretooptimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very good performance in comparison to other multiobjective evolutionary algorithms, and therefore it has been a point of reference in various recent investigations, e.g., (Corne, Knowles, and Oates 2000). Furthermore, it has been used in different applications, e.g., (Lahanas, Milickovic, Baltas, and Zamboglou 2001). In this paper, an improved version, namely SPEA2, is proposed, which incorporates in contrast to its predecessor a finegrained fitness assignment strategy, a density estimation technique, and an enhanced archive truncation method. The comparison of SPEA2 with SPEA and two other modern elitist methods, PESA and NSGAII, on different test problems yields promising results. 1
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
, 2000
"... In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in conver ..."
Abstract

Cited by 605 (39 self)
 Add to MetaCart
In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in converging to the Paretooptimal front (e.g., multimodality and deception). By investigating these different problem features separately, it is possible to predict the kind of problems to which a certain technique is or is not well suited. However, in contrast to what was suspected beforehand, the experimental results indicate a hierarchy of the algorithms under consideration. Furthermore, the emerging effects are evidence that the suggested test functions provide sufficient complexity to compare multiobjective optimizers. Finally, elitism is shown to be an important factor for improving evolutionary multiobjective search.
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
 Evolutionary Computation
, 1994
"... In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about t ..."
Abstract

Cited by 524 (4 self)
 Add to MetaCart
(Show Context)
In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Paretooptimal points, instead of a single point. Since genetic algorithms(GAs) work with a population of points, it seems natural to use GAs in multiobjective optimization problems to capture a number of solutions simultaneously. Although a vector evaluated GA (VEGA) has been implemented by Schaffer and has been tried to solve a number of multiobjective problems, the algorithm seems to have bias towards some regions. In this paper, we investigate Goldberg's notion of nondominated sorting in GAs along with a niche and speciation method to find multiple Paretooptimal points sim...
An Overview of Evolutionary Algorithms in Multiobjective Optimization
 Evolutionary Computation
, 1995
"... The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial performa ..."
Abstract

Cited by 487 (13 self)
 Add to MetaCart
(Show Context)
The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial performance measures with the inherently scalar way in which EAs reward individual performance, i.e., number of offspring. In this review, current multiobjective evolutionary approaches are discussed, ranging from the conventional analytical aggregation of the different objectives into a single function to a number of populationbased approaches and the more recent ranking schemes based on the definition of Paretooptimality. The sensitivity of different methods to
Evolutionary Algorithms for Multiobjective Optimization
, 2002
"... Multiple, often conflicting objectives arise naturally in most realworld optimization scenarios. As evolutionary algorithms possess several characteristics due to which they are well suited to this type of problem, evolutionbased methods have been used for multiobjective optimization for more than ..."
Abstract

Cited by 436 (14 self)
 Add to MetaCart
Multiple, often conflicting objectives arise naturally in most realworld optimization scenarios. As evolutionary algorithms possess several characteristics due to which they are well suited to this type of problem, evolutionbased methods have been used for multiobjective optimization for more than a decade. Meanwhile evolutionary multiobjective optimization has become established as a separate subdiscipline combining the fields of evolutionary computation and classical multiple criteria decision making. In this paper, the basic principles of evolutionary multiobjective optimization are discussed from an algorithm design perspective. The focus is on the major issues such as fitness assignment, diversity preservation, and elitism in general rather than on particular algorithms. Different techniques to implement these strongly related concepts will be discussed, and further important aspects such as constraint handling and preference articulation are treated as well. Finally, two applications will presented and some recent trends in the field will be outlined.
Multiobjective Evolutionary Algorithms: Analyzing the StateoftheArt
, 2000
"... Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mideighties in an attempt to stochastically solve problems of this generic class. During the past decade, ..."
Abstract

Cited by 424 (7 self)
 Add to MetaCart
(Show Context)
Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mideighties in an attempt to stochastically solve problems of this generic class. During the past decade, a variety of multiobjective EA (MOEA) techniques have been proposed and applied to many scientific and engineering applications. Our discussion's intent is to rigorously define multiobjective optimization problems and certain related concepts, present an MOEA classification scheme, and evaluate the variety of contemporary MOEAs. Current MOEA theoretical developments are evaluated; specific topics addressed include fitness functions, Pareto ranking, niching, fitness sharing, mating restriction, and secondary populations. Since the development and application of MOEAs is a dynamic and rapidly growing activity, we focus on key analytical insights based upon critical MOEA evaluation of c...
A Niched Pareto Genetic Algorithm for Multiobjective Optimization
 IN PROCEEDINGS OF THE FIRST IEEE CONFERENCE ON EVOLUTIONARY COMPUTATION, IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE
, 1994
"... Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic a ..."
Abstract

Cited by 395 (6 self)
 Add to MetaCart
Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic algorithm (GA), however, is readily modified to deal with multiple objectives by incorporating the concept of Pareto domination in its selection operator, and applying a niching pressure to spread its population out along the Pareto optimal tradeoff surface. We introduce the Niched Pareto GA as an algorithm for finding the Pareto optimal set. We demonstrate its ability to find and maintain a diverse "Pareto optimal population" on two artificial problems and an open problem in hydrosystems.
A Comprehensive Survey of EvolutionaryBased Multiobjective Optimization Techniques
 Knowledge and Information Systems
, 1998
"... . This paper presents a critical review of the most important evolutionarybased multiobjective optimization techniques developed over the years, emphasizing the importance of analyzing their Operations Research roots as a way to motivate the development of new approaches that exploit the search cap ..."
Abstract

Cited by 286 (22 self)
 Add to MetaCart
(Show Context)
. This paper presents a critical review of the most important evolutionarybased multiobjective optimization techniques developed over the years, emphasizing the importance of analyzing their Operations Research roots as a way to motivate the development of new approaches that exploit the search capabilities of evolutionary algorithms. Each technique is briefly described mentioning its advantages and disadvantages, their degree of applicability and some of their known applications. Finally, the future trends in this discipline and some of the open areas of research are also addressed. Keywords: multiobjective optimization, multicriteria optimization, vector optimization, genetic algorithms, evolutionary algorithms, artificial intelligence. 1 Introduction Since the pioneer work of Rosenberg in the late 60s regarding the possibility of using geneticbased search to deal with multiple objectives, this new area of research (now called evolutionary multiobjective optimization) has grown c...