Results 1 
2 of
2
Higher correlations of divisor sums related to primes, II: Variations of . . .
, 2007
"... We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the ..."
Abstract

Cited by 28 (6 self)
 Add to MetaCart
We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the third degree, and therefore the implications for the distribution of primes in short intervals, are the same as those we obtained (in the first paper with this title) by using the simpler approximation ΛR(n). However, when λR(n) is used, the error in the singular series approximation is often much smaller than what ΛR(n) allows. Assuming the Generalized Riemann Hypothesis (GRH) for Dirichlet Lfunctions, we obtain an Ω±result for the variation of the error term in the prime number theorem. Formerly, our knowledge under GRH was restricted to Ωresults for the absolute value of this variation. An important ingredient in the last part of this work is a recent result due to Montgomery and Soundararajan which makes it possible for us to dispense with a large error term in the evaluation of a certain singular series average. We believe that our results on the sums λR(n) and ΛR(n) can be employed in diverse problems concerning primes.
INTEGRAL MOMENTS OF LFUNCTIONS
, 2005
"... We give a newheuristic for all of the main terms in the integral moments of various families of primitive Lfunctions. The results agree with previous conjectures for the leading order terms. Our conjectures also have an almost identical form to exact expressions for the corresponding moments of the ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
We give a newheuristic for all of the main terms in the integral moments of various families of primitive Lfunctions. The results agree with previous conjectures for the leading order terms. Our conjectures also have an almost identical form to exact expressions for the corresponding moments of the characteristic polynomials of either unitary, orthogonal, or symplectic matrices, where the moments are de ned by the appropriate group averages. This lends support to the idea that arithmetical Lfunctions have a spectral interpretation, and that their value distributions can be modeled using Random Matrix Theory. Numerical examples show good agreement with our conjectures.