Results 1 
7 of
7
Applying Universal Algebra to Lambda Calculus
, 2007
"... The aim of this paper is double. From one side we survey the knowledge we have acquired these last ten years about the lattice of all λtheories ( = equational extensions of untyped λcalculus) and the models of lambda calculus via universal algebra. This includes positive or negative answers to se ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
The aim of this paper is double. From one side we survey the knowledge we have acquired these last ten years about the lattice of all λtheories ( = equational extensions of untyped λcalculus) and the models of lambda calculus via universal algebra. This includes positive or negative answers to several questions raised in these years as well as several independent results, the state of the art about the longstanding open questions concerning the representability of λtheories as theories of models, and 26 open problems. On the other side, against the common belief, we show that lambda calculus and combinatory logic satisfy interesting algebraic properties. In fact the Stone representation theorem for Boolean algebras can be generalized to combinatory algebras and λabstraction algebras. In every combinatory and λabstraction algebra there is a Boolean algebra of central elements (playing the role of idempotent elements in rings). Central elements are used to represent any combinatory and λabstraction algebra as a weak Boolean product of directly indecomposable algebras (i.e., algebras which cannot be decomposed as the Cartesian product of two other nontrivial algebras). Central elements are also used to provide applications of the representation theorem to lambda calculus. We show that the indecomposable semantics (i.e., the semantics of lambda calculus given in terms of models of lambda calculus, which are directly indecomposable as combinatory algebras) includes the continuous, stable and strongly stable semantics, and the term models of all semisensible λtheories. In one of the main results of the paper we show that the indecomposable semantics is equationally incomplete, and this incompleteness is as wide as possible.
Resource combinatory algebras
"... Abstract. We initiate a purely algebraic study of Ehrhard and Regnier’s resource λcalculus, by introducing three equational classes of algebras: resource combinatory algebras, resource lambdaalgebras and resource lambdaabstraction algebras. We establish the relations between them, laying down fou ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. We initiate a purely algebraic study of Ehrhard and Regnier’s resource λcalculus, by introducing three equational classes of algebras: resource combinatory algebras, resource lambdaalgebras and resource lambdaabstraction algebras. We establish the relations between them, laying down foundations for a model theory of resource λcalculus. We also show that the ideal completion of a resource combinatory (resp. lambda, lambdaabstraction) algebra induces a “classical ” combinatory (resp. lambda, lambdaabstraction) algebra, and that any model of the classical λcalculus raising from a resource lambdaalgebra determines a λtheory which equates all terms having the same Böhm tree. 1
The Visser topology of lambda calculus
"... A longstanding open problem in lambda calculus is whether there exists a nonsyntactical model of the untyped lambda calculus whose theory is exactly the least λtheory λβ. In this paper we make use of the Visser topology for investigating the related question of whether the equational theory of a m ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
A longstanding open problem in lambda calculus is whether there exists a nonsyntactical model of the untyped lambda calculus whose theory is exactly the least λtheory λβ. In this paper we make use of the Visser topology for investigating the related question of whether the equational theory of a model can be recursively enumerable (r.e. for brevity). We introduce the notion of an effective model of lambda calculus and prove the following results: (i) The equational theory of an effective model cannot be λβ, λβη; (ii) The order theory of an effective model cannot be r.e.; (iii) No effective model living in the stable or strongly stable semantics has an r.e. equational theory. Concerning Scott’s semantics, we investigate the class of graph models and prove the following, where “graph theory ” is a shortcut for “theory of a graph model”: (iv) There exists a minimum order graph theory (for equational graph theories this was proved in [9, 10]). (v) The minimum equational/order graph theory is the theory of an effective graph model. (vi) No order graph theory can be r.e. (vii) Every equational/order graph theory is the theory of a graph model having a countable web. This last result proves that the class of graph models enjoys a kind of (downwards) LöwenheimSkolem theorem, and it answers positively Question 3 in [4, Section 6.3] for the class of graph models. 1.
Nominal Algebra and the HSP Theorem
"... Nominal algebra is a logic of equality developed to reason algebraically in the presence of binding. In previous work it has been shown how nominal algebra can be used to specify and reason algebraically about systems with binding, such as firstorder logic, the lambdacalculus, or process calculi. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Nominal algebra is a logic of equality developed to reason algebraically in the presence of binding. In previous work it has been shown how nominal algebra can be used to specify and reason algebraically about systems with binding, such as firstorder logic, the lambdacalculus, or process calculi. Nominal algebra has a semantics in nominal sets (sets with a finitelysupported permutation action); previous work proved soundness and completeness. The HSP theorem characterises the class of models of an algebraic theory as a class closed under homomorphic images, subalgebras, and products, and is a fundamental result of universal algebra. It is not obvious that nominal algebra should satisfy the HSP theorem: nominal algebra axioms are subject to socalled freshness conditions which give them some flavour of implication; nominal sets have significantly richer structure than the sets semantics traditionally used in universal algebra. The usual method of proof for the HSP theorem does not obviously transfer to the nominal algebra setting. In this paper we give the constructions which show that, after all, a ‘nominal ’ version of the HSP theorem holds for nominal algebra; it corresponds to closure under homomorphic images, subalgebras, products, and an atomsabstraction construction specific to nominalstyle semantics. Keywords: universal algebra, equational logic, nominal algebra, HSP or Birkhoff’s theorem, nominal sets, nominal terms 1
Effective λmodels versus recursively enumerable λtheories
"... A longstanding open problem is whether there exists a nonsyntactical model of the untyped λcalculus whose theory is exactly the least λtheory λβ. In this paper we investigate the more general question of whether the equational/order theory of a model of the untyped λcalculus can be recursively e ..."
Abstract
 Add to MetaCart
A longstanding open problem is whether there exists a nonsyntactical model of the untyped λcalculus whose theory is exactly the least λtheory λβ. In this paper we investigate the more general question of whether the equational/order theory of a model of the untyped λcalculus can be recursively enumerable (r.e. for brevity). We introduce a notion of effective model of λcalculus, which covers in particular all the models individually introduced in the literature. We prove that the order theory of an effective model is never r.e.; from this it follows that its equational theory cannot be λβ, λβη. We then show that no effective model living in the stable or strongly stable semantics has an r.e. equational theory. Concerning Scott’s semantics, we investigate the class of graph models and prove that no order theory of a graph model can be r.e., and that there exists an effective graph model whose equational/order theory is the minimum among the theories of graph models. Finally, we show that the class of graph models enjoys a kind of downwards LöwenheimSkolem theorem.
Models and theories of λcalculus
, 904
"... Abstract. In this paper we briefly summarize the contents of Manzonetto’s PhD thesis [35] which concerns denotational semantics and equational/order theories of the pure untyped λcalculus. The main research achievements include: (i) a general construction of λmodels from reflexive objects in (poss ..."
Abstract
 Add to MetaCart
Abstract. In this paper we briefly summarize the contents of Manzonetto’s PhD thesis [35] which concerns denotational semantics and equational/order theories of the pure untyped λcalculus. The main research achievements include: (i) a general construction of λmodels from reflexive objects in (possibly nonwellpointed) categories; (ii) a Stonestyle representation theorem for combinatory algebras; (iii) a proof that no effective λmodel can have λβ or λβη as its equational theory (this can be seen as a partial answer to an open problem introduced by HonsellRonchi Della Rocca in 1984). These results, and others, have been published in three conference papers [36,10,15] and a journal paper [37]; a further journal paper has been submitted [9].