Results 1  10
of
43
Tensor Decompositions and Applications
 SIAM REVIEW
, 2009
"... This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal proce ..."
Abstract

Cited by 225 (14 self)
 Add to MetaCart
This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, etc. Two particular tensor decompositions can be considered to be higherorder extensions of the matrix singular value decompo
sition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rankone tensors, and the Tucker decomposition is a higherorder form of principal components analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The Nway Toolbox and Tensor Toolbox, both for MATLAB, and the Multilinear Engine are examples of software packages for working with tensors.
Unsupervised multiway data analysis: A literature survey
 IEEE Transactions on Knowledge and Data Engineering
, 2008
"... Multiway data analysis captures multilinear structures in higherorder datasets, where data have more than two modes. Standard twoway methods commonly applied on matrices often fail to find the underlying structures in multiway arrays. With increasing number of application areas, multiway data anal ..."
Abstract

Cited by 42 (8 self)
 Add to MetaCart
Multiway data analysis captures multilinear structures in higherorder datasets, where data have more than two modes. Standard twoway methods commonly applied on matrices often fail to find the underlying structures in multiway arrays. With increasing number of application areas, multiway data analysis has become popular as an exploratory analysis tool. We provide a review of significant contributions in literature on multiway models, algorithms as well as their applications in diverse disciplines including chemometrics, neuroscience, computer vision, and social network analysis. 1.
Scalable tensor decompositions for multiaspect data mining
 In ICDM 2008: Proceedings of the 8th IEEE International Conference on Data Mining
, 2008
"... Modern applications such as Internet traffic, telecommunication records, and largescale social networks generate massive amounts of data with multiple aspects and high dimensionalities. Tensors (i.e., multiway arrays) provide a natural representation for such data. Consequently, tensor decompositi ..."
Abstract

Cited by 31 (1 self)
 Add to MetaCart
Modern applications such as Internet traffic, telecommunication records, and largescale social networks generate massive amounts of data with multiple aspects and high dimensionalities. Tensors (i.e., multiway arrays) provide a natural representation for such data. Consequently, tensor decompositions such as Tucker become important tools for summarization and analysis. One major challenge is how to deal with highdimensional, sparse data. In other words, how do we compute decompositions of tensors where most of the entries of the tensor are zero. Specialized techniques are needed for computing the Tucker decompositions for sparse tensors because standard algorithms do not account for the sparsity of the data. As a result, a surprising phenomenon is observed by practitioners: Despite the fact that there is enough memory to store both the input tensors and the factorized output tensors, memory overflows occur during the tensor factorization process. To address this intermediate blowup problem, we propose MemoryEfficient Tucker (MET). Based on the available memory, MET adaptively selects the right execution strategy during the decomposition. We provide quantitative and qualitative evaluation of MET on real tensors. It achieves over 1000X space reduction without sacrificing speed; it also allows us to work with much larger tensors that were too big to handle before. Finally, we demonstrate a data mining casestudy using MET. 1
Krylov subspace methods for linear systems with tensor product structure
 SIAM J. Matrix Anal. Appl
"... Abstract. The numerical solution of linear systems with certain tensor product structures is considered. Such structures arise, for example, from the finite element discretization of a linear PDE on a ddimensional hypercube. Linear systems with tensor product structure can be regarded as linear mat ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
Abstract. The numerical solution of linear systems with certain tensor product structures is considered. Such structures arise, for example, from the finite element discretization of a linear PDE on a ddimensional hypercube. Linear systems with tensor product structure can be regarded as linear matrix equations for d = 2 and appear to be their most natural extension for d> 2. A standard Krylov subspace method applied to such a linear system suffers from the curse of dimensionality and has a computational cost that grows exponentially with d. The key to breaking the curse is to note that the solution can often be very well approximated by a vector of low tensor rank. We propose and analyse a new class of methods, so called tensor Krylov subspace methods, which exploit this fact and attain a computational cost that grows linearly with d.
A NEWTONGRASSMANN METHOD FOR COMPUTING THE BEST MULTILINEAR RANK(R_1, R_2, R_3) APPROXIMATION OF A Tensor
"... We derive a Newton method for computing the best rank(r_1, r_2, r_3) approximation of a given J × K × L tensor A. The problem is formulated as an approximation problem on a product of Grassmann manifolds. Incorporating the manifold structure into Newton’s method ensures that all iterates generated ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
We derive a Newton method for computing the best rank(r_1, r_2, r_3) approximation of a given J × K × L tensor A. The problem is formulated as an approximation problem on a product of Grassmann manifolds. Incorporating the manifold structure into Newton’s method ensures that all iterates generated by the algorithm are points on the Grassmann manifolds. We also introduce a consistent notation for matricizing a tensor, for contracted tensor products and some tensoralgebraic manipulations, which simplify the derivation of the Newton equations and enable straightforward algorithmic implementation. Experiments show a quadratic convergence rate for the NewtonGrassmann algorithm.
Crosslanguage information retrieval using PARAFAC2
 Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, 2007
"... Approved for public release; further dissemination unlimited. ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
Approved for public release; further dissemination unlimited.
Multivis: Contentbased social network exploration through multiway visual analysis
 In SDM
, 2009
"... With the explosion of social media, scalability becomes a key challenge. There are two main aspects of the problems that arise: 1) data volume: how to manage and analyze huge datasets to efficiently extract patterns, 2) data understanding: how to facilitate understanding of the patterns by users? To ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
With the explosion of social media, scalability becomes a key challenge. There are two main aspects of the problems that arise: 1) data volume: how to manage and analyze huge datasets to efficiently extract patterns, 2) data understanding: how to facilitate understanding of the patterns by users? To address both aspects of the scalability challenge, we present a hybrid approach that leverages two complementary disciplines, data mining and information visualization. In particular, we propose 1) an analytic data model for contentbased networks using tensors; 2) an efficient highorder clustering framework for analyzing the data; 3) a scalable contextsensitive graph visualization to present the clusters. We evaluate the proposed methods using both synthetic and real datasets. In terms of computational efficiency, the proposed methods are an order of magnitude faster compared to the baseline. In terms of effectiveness, we present several case studies of real corporate social networks. 1
Link Prediction on Evolving Data using Matrix and Tensor Factorizations
 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS
, 2009
"... The data in many disciplines such as social networks, web analysis, etc. is linkbased, and the link structure can be exploited for many different data mining tasks. In this paper, we consider the problem of temporal link prediction: Given link data for time periods 1 through T, can we predict the l ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
The data in many disciplines such as social networks, web analysis, etc. is linkbased, and the link structure can be exploited for many different data mining tasks. In this paper, we consider the problem of temporal link prediction: Given link data for time periods 1 through T, can we predict the links in time period T +1? Specifically, we look at bipartite graphs changing over time and consider matrix and tensorbased methods for predicting links. We present a weightbased method for collapsing multiyear data into a single matrix. We show how the wellknown Katz method for link prediction can be extended to bipartite graphs and, moreover, approximated in a scalable way using a truncated singular value decomposition. Using a CANDECOMP/PARAFAC tensor decomposition of the data, we illustrate the usefulness of exploiting the natural threedimensional structure of temporal link data. Through several numerical experiments, we demonstrate that both matrixand tensorbased techniques are effective for temporal link prediction despite the inherent difficulty of the problem.
An Optimization Approach for Fitting Canonical Tensor Decompositions
, 2009
"... Tensor decompositions are higherorder analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
Tensor decompositions are higherorder analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum of component rankone tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience, and web analysis. The task of computing the CPD, however, can be diﬃcult. The typical approach is based on alternating least squares (ALS) optimization, which can be remarkably fast but is not very accurate. Previously, nonlinear least squares (NLS) methods have also been recommended; existing NLS methods are accurate but slow. In this paper, we propose the use
of gradientbased optimization methods. We discuss the mathematical calculation of the derivatives and further show that they can be computed eﬃciently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradientbased optimization methods are much more accurate than ALS and orders of magnitude faster than NLS.
On the Representation and Multiplication of Hypersparse Matrices
, 2008
"... Multicore processors are marking the beginning of a new era of computing where massive parallelism is available and necessary. Slightly slower but easy to parallelize kernels are becoming more valuable than sequentially faster kernels that are unscalable when parallelized. In this paper, we focus on ..."
Abstract

Cited by 9 (7 self)
 Add to MetaCart
Multicore processors are marking the beginning of a new era of computing where massive parallelism is available and necessary. Slightly slower but easy to parallelize kernels are becoming more valuable than sequentially faster kernels that are unscalable when parallelized. In this paper, we focus on the multiplication of sparse matrices (SpGEMM). We first present the issues with existing sparse matrix representations and multiplication algorithms that make them unscalable to thousands of processors. Then, we develop and analyze two new algorithms that overcome these limitations. We consider our algorithms first as the sequential kernel of a scalable parallel sparse matrix multiplication algorithm and second as part of a polyalgorithm for SpGEMM that would execute different kernels depending on the sparsity of the input matrices. Such a sequential kernel requires a new data structure that exploits the hypersparsity of the individual submatrices owned by a single processor after the 2D partitioning. We experimentally evaluate the performance and characteristics of our algorithms and show that they scale significantly better than existing kernels.