Results 1 
3 of
3
Explanation Trees for Causal Bayesian Networks
"... Bayesian networks can be used to extract explanations about the observed state of a subset of variables. In this paper, we explicate the desiderata of an explanation and confront them with the concept of explanation proposed by existing methods. The necessity of taking into account causal approaches ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Bayesian networks can be used to extract explanations about the observed state of a subset of variables. In this paper, we explicate the desiderata of an explanation and confront them with the concept of explanation proposed by existing methods. The necessity of taking into account causal approaches when a causal graph is available is discussed. We then introduce causal explanation trees, based on the construction of explanation trees using the measure of causal information ow (Ay and Polani, 2006). This approach is compared to several other methods on known networks. 1
Most relevant explanation in Bayesian networks
 Journal of Artificial Intelligence Research
, 2011
"... A major inference task in Bayesian networks is explaining why some variables are observed in their particular states using a set of target variables. Existing methods for solving this problem often generate explanations that are either too simple (underspecified) or too complex (overspecified). In ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
A major inference task in Bayesian networks is explaining why some variables are observed in their particular states using a set of target variables. Existing methods for solving this problem often generate explanations that are either too simple (underspecified) or too complex (overspecified). In this paper, we introduce a method called Most Relevant Explanation (MRE) which finds a partial instantiation of the target variables that maximizes the generalized Bayes factor (GBF) as the best explanation for the given evidence. Our study shows that GBF has several theoretical properties that enable MRE to automatically identify the most relevant target variables in forming its explanation. In particular, conditional Bayes factor (CBF), defined as the GBF of a new explanation conditioned on an existing explanation, provides a soft measure on the degree of relevance of the variables in the new explanation in explaining the evidence given the existing explanation. As a result, MRE is able to automatically prune less relevant variables from its explanation. We also show that CBF is able to capture well the explainingaway phenomenon that is often represented in Bayesian networks. Moreover, we define two dominance relations between the candidate solutions and use the relations to generalize MRE to find a set of top explanations that is both diverse and representative. Case studies on several benchmark diagnostic Bayesian networks show that MRE is often able to find explanatory hypotheses that are not only precise but also concise. 1.