Results 11  20
of
4,325
Unsupervised learning of finite mixture models
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2002
"... This paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectationmaximization (EM) alg ..."
Abstract

Cited by 418 (22 self)
 Add to MetaCart
This paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectationmaximization (EM) algorithm, it does not require careful initialization. The proposed method also avoids another drawback of EM for mixture fitting: the possibility of convergence toward a singular estimate at the boundary of the parameter space. The novelty of our approach is that we do not use a model selection criterion to choose one among a set of preestimated candidate models; instead, we seamlessly integrate estimation and model selection in a single algorithm. Our technique can be applied to any type of parametric mixture model for which it is possible to write an EM algorithm; in this paper, we illustrate it with experiments involving Gaussian mixtures. These experiments testify for the good performance of our approach.
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 408 (0 self)
 Add to MetaCart
(Show Context)
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
The minimum description length principle in coding and modeling
 IEEE TRANS. INFORM. THEORY
, 1998
"... We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized maximized ..."
Abstract

Cited by 394 (18 self)
 Add to MetaCart
(Show Context)
We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized maximized likelihood, mixture, and predictive codings are each shown to achieve the stochastic complexity to within asymptotically vanishing terms. We assess the performance of the minimum description length criterion both from the vantage point of quality of data compression and accuracy of statistical inference. Context tree modeling, density estimation, and model selection in Gaussian linear regression serve as examples.
Strictly Proper Scoring Rules, Prediction, and Estimation
, 2007
"... Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the predictive distribution and on the event or value that materializes. A scoring rule is proper if the forecaster maximizes the expected score for an observation drawn from the distribution F if he ..."
Abstract

Cited by 373 (28 self)
 Add to MetaCart
Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the predictive distribution and on the event or value that materializes. A scoring rule is proper if the forecaster maximizes the expected score for an observation drawn from the distribution F if he or she issues the probabilistic forecast F, rather than G ̸ = F. It is strictly proper if the maximum is unique. In prediction problems, proper scoring rules encourage the forecaster to make careful assessments and to be honest. In estimation problems, strictly proper scoring rules provide attractive loss and utility functions that can be tailored to the problem at hand. This article reviews and develops the theory of proper scoring rules on general probability spaces, and proposes and discusses examples thereof. Proper scoring rules derive from convex functions and relate to information measures, entropy functions, and Bregman divergences. In the case of categorical variables, we prove a rigorous version of the Savage representation. Examples of scoring rules for probabilistic forecasts in the form of predictive densities include the logarithmic, spherical, pseudospherical, and quadratic scores. The continuous ranked probability score applies to probabilistic forecasts that take the form of predictive cumulative distribution functions. It generalizes the absolute error and forms a special case of a new and very general type of score, the energy score. Like many other scoring rules, the energy score admits a kernel representation in terms of negative definite functions, with links to inequalities of Hoeffding type, in both univariate and multivariate settings. Proper scoring rules for quantile and interval forecasts are also discussed. We relate proper scoring rules to Bayes factors and to crossvalidation, and propose a novel form of crossvalidation known as randomfold crossvalidation. A case study on probabilistic weather forecasts in the North American Pacific Northwest illustrates the importance of propriety. We note optimum score approaches to point and quantile
Hierarchical Bayesian Optimization Algorithm = Bayesian Optimization Algorithm + Niching + Local Structures
, 2001
"... The paper describes the hierarchical Bayesian optimization algorithm which combines the Bayesian optimization algorithm, local structures in Bayesian networks, and a powerful niching technique. The proposed algorithm is able to solve hierarchical traps and other difficult problems very efficiently. ..."
Abstract

Cited by 329 (70 self)
 Add to MetaCart
(Show Context)
The paper describes the hierarchical Bayesian optimization algorithm which combines the Bayesian optimization algorithm, local structures in Bayesian networks, and a powerful niching technique. The proposed algorithm is able to solve hierarchical traps and other difficult problems very efficiently.
Bayesian Model Averaging for Linear Regression Models
 Journal of the American Statistical Association
, 1997
"... We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem in ..."
Abstract

Cited by 325 (17 self)
 Add to MetaCart
(Show Context)
We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem involves averaging over all possible models (i.e., combinations of predictors) when making inferences about quantities of
ProtTest: selection of bestfit models of protein evolution
 Bioinformatics
, 2005
"... doi:10.1093/bioinformatics/bti263 ..."
(Show Context)
Learning the structure of dynamic probabilistic networks
, 1998
"... Dynamic probabilistic networks are a compact representation of complex stochastic processes. In this paper we examine how to learn the structure of a DPN from data. We extend structure scoring rules for standard probabilistic networks to the dynamic case, and show how to search for structure when so ..."
Abstract

Cited by 283 (14 self)
 Add to MetaCart
Dynamic probabilistic networks are a compact representation of complex stochastic processes. In this paper we examine how to learn the structure of a DPN from data. We extend structure scoring rules for standard probabilistic networks to the dynamic case, and show how to search for structure when some of the variables are hidden. Finally, we examine two applications where such a technology might be useful: predicting and classifying dynamic behaviors, and learning causal orderings in biological processes. We provide empirical results that demonstrate the applicability of our methods in both domains. 1
Learning Bayesian Networks With Local Structure
, 1996
"... . We examine a novel addition to the known methods for learning Bayesian networks from data that improves the quality of the learned networks. Our approach explicitly represents and learns the local structure in the conditional probability distributions (CPDs) that quantify these networks. This inc ..."
Abstract

Cited by 272 (12 self)
 Add to MetaCart
. We examine a novel addition to the known methods for learning Bayesian networks from data that improves the quality of the learned networks. Our approach explicitly represents and learns the local structure in the conditional probability distributions (CPDs) that quantify these networks. This increases the space of possible models, enabling the representation of CPDs with a variable number of parameters. The resulting learning procedure induces models that better emulate the interactions present in the data. We describe the theoretical foundations and practical aspects of learning local structures and provide an empirical evaluation of the proposed learning procedure. This evaluation indicates that learning curves characterizing this procedure converge faster, in the number of training instances, than those of the standard procedure, which ignores the local structure of the CPDs. Our results also show that networks learned with local structures tend to be more complex (in terms of a...