Results 1 
6 of
6
Computation with classical sequents
 MATHEMATICAL STRUCTURES OF COMPUTER SCIENCE
, 2008
"... X is an untyped continuationstyle formal language with a typed subset which provides a CurryHoward isomorphism for a sequent calculus for implicative classical logic. X can also be viewed as a language for describing nets by composition of basic components connected by wires. These features make X ..."
Abstract

Cited by 16 (16 self)
 Add to MetaCart
X is an untyped continuationstyle formal language with a typed subset which provides a CurryHoward isomorphism for a sequent calculus for implicative classical logic. X can also be viewed as a language for describing nets by composition of basic components connected by wires. These features make X an expressive platform on which algebraic objects and many different (applicative) programming paradigms can be mapped. In this paper we will present the syntax and reduction rules for X and in order to demonstrate the expressive power of X, we will show how elaborate calculi can be embedded, like the λcalculus, Bloo and Rose’s calculus of explicit substitutions λx, Parigot’s λµ and Curien and Herbelin’s λµ ˜µ.
From X to π; representing the classical sequent calculus
"... Abstract. We study the πcalculus, enriched with pairing and nonblocking input, and define a notion of type assignment that uses the type constructor →. We encode the circuits of the calculus X into this variant of π, and show that all reduction (cutelimination) and assignable types are preserved. ..."
Abstract

Cited by 12 (12 self)
 Add to MetaCart
Abstract. We study the πcalculus, enriched with pairing and nonblocking input, and define a notion of type assignment that uses the type constructor →. We encode the circuits of the calculus X into this variant of π, and show that all reduction (cutelimination) and assignable types are preserved. Since X enjoys the CurryHoward isomorphism for Gentzen’s calculus LK, this implies that all proofs in LK have a representation in π.
Superdeduction at Work
"... Abstract Superdeduction is a systematic way to extend a deduction system like the sequent calculus by new deduction rules computed from the user theory. We show how this could be done in a systematic, correct and complete way. We prove in detail the strong normalization of a proof term language that ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract Superdeduction is a systematic way to extend a deduction system like the sequent calculus by new deduction rules computed from the user theory. We show how this could be done in a systematic, correct and complete way. We prove in detail the strong normalization of a proof term language that models appropriately superdeduction. We finaly examplify on several examples, including equality and noetherian induction, the usefulness of this approach which is implemented in the lemuridæ system, written in TOM. 1
Classical Cutelimination in the πcalculus
"... We study the πcalculus, enriched with pairing, and define a notion of type assignment that uses the type constructor →. We encode the terms of the calculus X into this variant of π, and show that all reduction (cutelimination) and assignable types are preserved. Since X enjoys the CurryHoward iso ..."
Abstract
 Add to MetaCart
We study the πcalculus, enriched with pairing, and define a notion of type assignment that uses the type constructor →. We encode the terms of the calculus X into this variant of π, and show that all reduction (cutelimination) and assignable types are preserved. Since X enjoys the CurryHoward isomorphism for Gentzen’s calculu LK, this implies that all proofs in LK have a representation in π. We then enrich the logic with the connector ¬, and show that this also can be represented in π.
unknown title
"... ABSTRACT. This paper presents a short overview of some of the results achieved for the calculus X, which is based on Gentzen’s LK. It presents the calculus, its suitability for encoding the λcalculus and the λµcalculus, as well as a typepreserving encoding of X into the πcalculus. ..."
Abstract
 Add to MetaCart
ABSTRACT. This paper presents a short overview of some of the results achieved for the calculus X, which is based on Gentzen’s LK. It presents the calculus, its suitability for encoding the λcalculus and the λµcalculus, as well as a typepreserving encoding of X into the πcalculus.
unknown title
"... ABSTRACT. This paper presents a short overview of some of the results achieved for the calculus X, which is based on Gentzen’s LK. It presents the calculus, its suitability for encoding the λcalculus and the λµcalculus, as well as a typepreserving encoding of X into the πcalculus. ..."
Abstract
 Add to MetaCart
ABSTRACT. This paper presents a short overview of some of the results achieved for the calculus X, which is based on Gentzen’s LK. It presents the calculus, its suitability for encoding the λcalculus and the λµcalculus, as well as a typepreserving encoding of X into the πcalculus.