Results 11  20
of
79
Applications of Linear Logic to Computation: An Overview
, 1993
"... This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, li ..."
Abstract

Cited by 41 (3 self)
 Add to MetaCart
This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, like semantics of negation in LP, nonmonotonic issues in AI planning, etc. Although the overview covers pretty much the stateoftheart in this area, by necessity many of the works are only mentioned and referenced, but not discussed in any considerable detail. The paper does not presuppose any previous exposition to LL, and is addressed more to computer scientists (probably with a theoretical inclination) than to logicians. The paper contains over 140 references, of which some 80 are about applications of LL. 1 Linear Logic Linear Logic (LL) was introduced in 1987 by Girard [62]. From the very beginning it was recognized as relevant to issues of computation (especially concurrency and stat...
A proof theory for generic judgments: An extended abstract
 In LICS 2003
, 2003
"... A powerful and declarative means of specifying computations containing abstractions involves metalevel, universally quantified generic judgments. We present a proof theory for such judgments in which signatures are associated to each sequent (used to account for eigenvariables of the sequent) and t ..."
Abstract

Cited by 41 (15 self)
 Add to MetaCart
A powerful and declarative means of specifying computations containing abstractions involves metalevel, universally quantified generic judgments. We present a proof theory for such judgments in which signatures are associated to each sequent (used to account for eigenvariables of the sequent) and to each formula in the sequent (used to account for generic variables locally scoped over the formula). A new quantifier, ∇, is introduced to explicitly manipulate the local signature. Intuitionistic logic extended with ∇ satisfies cutelimination even when the logic is additionally strengthened with a proof theoretic notion of definitions. The resulting logic can be used to encode naturally a number of examples involving name abstractions, and we illustrate using the πcalculus and the encoding of objectlevel provability.
Focusing the inverse method for linear logic
 Proceedings of CSL 2005
, 2005
"... 1.1 Quantification and the subformula property.................. 3 1.2 Ground forward sequent calculus......................... 5 1.3 Lifting to free variables............................... 10 ..."
Abstract

Cited by 38 (11 self)
 Add to MetaCart
1.1 Quantification and the subformula property.................. 3 1.2 Ground forward sequent calculus......................... 5 1.3 Lifting to free variables............................... 10
Encoding Transition Systems in Sequent Calculus
 Theoretical Computer Science
, 1996
"... Intuitionistic and linear logics can be used to specify the operational semantics of transition systems in various ways. We consider here two encodings: one uses linear logic and maps states of the transition system into formulas, and the other uses intuitionistic logic and maps states into terms. I ..."
Abstract

Cited by 33 (10 self)
 Add to MetaCart
Intuitionistic and linear logics can be used to specify the operational semantics of transition systems in various ways. We consider here two encodings: one uses linear logic and maps states of the transition system into formulas, and the other uses intuitionistic logic and maps states into terms. In both cases, it is possible to relate transition paths to proofs in sequent calculus. In neither encoding, however, does it seem possible to capture properties, such as simulation and bisimulation, that need to consider all possible transitions or all possible computation paths. We consider augmenting both intuitionistic and linear logics with a proof theoretical treatment of definitions. In both cases, this addition allows proving various judgments concerning simulation and bisimulation (especially for noetherian transition systems). We also explore the use of infinite proofs to reason about infinite sequences of transitions. Finally, combining definitions and induction into sequent calculus proofs makes it possible to reason more richly about properties of transition systems completely within the formal setting of sequent calculus.
A Concurrent Logical Framework: The Propositional Fragment
, 2003
"... We present the propositional fragment CLF0 of the Concurrent Logical Framework (CLF). CLF extends the Linear Logical Framework to allow the natural representation of concurrent computations in an object language. The underlying type theory uses monadic types to segregate values from computations ..."
Abstract

Cited by 31 (3 self)
 Add to MetaCart
We present the propositional fragment CLF0 of the Concurrent Logical Framework (CLF). CLF extends the Linear Logical Framework to allow the natural representation of concurrent computations in an object language. The underlying type theory uses monadic types to segregate values from computations. This separation leads to a tractable notion of definitional equality that identifies computations di#ering only in the order of execution of independent steps. From a logical point of view our type theory can be seen as a novel combination of lax logic and dual intuitionistic linear logic. An encoding of a small Petri net exemplifies the representation methodology, which can be summarized as "concurrent computations as monadic expressions ".
HigherOrder, Linear, Concurrent Constraint Programming
, 1992
"... We present a very simple and powerful framework for indeterminate, asynchronous, higherorder computation based on the formulaasagent and proofascomputation interpretation of (higherorder) linear logic [Gir87]. The framework significantly refines and extends the scope of the concurrent constrai ..."
Abstract

Cited by 30 (5 self)
 Add to MetaCart
We present a very simple and powerful framework for indeterminate, asynchronous, higherorder computation based on the formulaasagent and proofascomputation interpretation of (higherorder) linear logic [Gir87]. The framework significantly refines and extends the scope of the concurrent constraint programming paradigm [Sar89] in two fundamental ways: (1) by allowing for the consumption of information by agents it permits a direct modelling of (indeterminate) state change in a logical framework, and (2) by admitting simplytyped terms as dataobjects, it permits the construction, transmission and application of (abstractions of) programs at runtime. Much more dramatically, however, the framework can be seen as presenting higherorder (and if desired, constraintenriched) versions of a variety of other asynchronous concurrent systems, including the asynchronous ("input guarded") fragment of the (firstorder) ßcalculus, Hewitt's actors formalism, (abstract forms of) Gelernter's Lin...
Logic Programming and MultiAgent Systems: A Synergic Combination for Applications and Semantics
 IN THE LOGIC PROGRAMMING PARADIGM  A 25YEAR PERSPECTIVE
, 1999
"... ..."
Frühwirth: A LinearLogic Semantics For Constraint Handling Rules
 Proceedings of CP 2005
, 2005
"... Abstract. We motivate and develop a linear logic declarative semantics for CHR ∨ , an extension of the CHR programming language that integrates concurrent committed choice with backtrack search and a predefined underlying constraint handler. We show that our semantics maps each of these aspects of t ..."
Abstract

Cited by 23 (10 self)
 Add to MetaCart
Abstract. We motivate and develop a linear logic declarative semantics for CHR ∨ , an extension of the CHR programming language that integrates concurrent committed choice with backtrack search and a predefined underlying constraint handler. We show that our semantics maps each of these aspects of the language to a distinct aspect of linear logic. We show how we can use this semantics to reason about derivations in CHR ∨ and we present strong theorems concerning its soundness and completeness. 1
Linear Logic and Computation: A Survey
 Proof and Computation, Proceedings Marktoberdorf Summer School
, 1993
"... . This is a survey of computational aspects of linear logic related to proof search. Keywords. Linear logic, cut free proof search, logic programming, complexity. 1 Introduction Linear logic, introduced by Girard [14, 36, 32], is a refinement of classical logic. While the central notions of truth ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
. This is a survey of computational aspects of linear logic related to proof search. Keywords. Linear logic, cut free proof search, logic programming, complexity. 1 Introduction Linear logic, introduced by Girard [14, 36, 32], is a refinement of classical logic. While the central notions of truth (emphasized in classical logic) and proof construction (emphasized in intuitionistic logic) remain important in linear logic, it might be said that the emphasis in linear logic is on state. Linear logic is sometimes described as being resource sensitive because it provides an intrinsic and natural accounting of process states, events, and resources. Linear logic also sheds new light on classical logic and its relationship to intuitionistic logic, see Girard [15, 16] and Danos et al. [11]. An evocative semantic paradigm for linear logic by means of games is proposed by Blass [7] and by Abramsky and Jagadeesan [2]. As an intuitive motivation, let us consider reading logical deductions so tha...