Results 1  10
of
33
Snopt: An SQP Algorithm For LargeScale Constrained Optimization
, 1997
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 332 (18 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse.
Sequential Quadratic Programming
, 1995
"... this paper we examine the underlying ideas of the SQP method and the theory that establishes it as a framework from which effective algorithms can ..."
Abstract

Cited by 115 (2 self)
 Add to MetaCart
this paper we examine the underlying ideas of the SQP method and the theory that establishes it as a framework from which effective algorithms can
A trust region method based on interior point techniques for nonlinear programming
 Mathematical Programming
, 1996
"... Jorge Nocedal z An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is described. It applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direc ..."
Abstract

Cited by 105 (18 self)
 Add to MetaCart
Jorge Nocedal z An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is described. It applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. This framework permits primal and primaldual steps, but the paper focuses on the primal version of the new algorithm. An analysis of the convergence properties of this method is presented. Key words: constrained optimization, interior point method, largescale optimization, nonlinear programming, primal method, primaldual method, SQP iteration, barrier method, trust region method.
CUTEr (and SifDec), a constrained and unconstrained testing environment, revisited
 ACM Transactions on Mathematical Software
, 2001
"... Abstract. The initial release of CUTE, a widely used testing environment for optimization software was described in [2]. The latest version, now known as CUTEr is presented. New features include reorganisation of the environment to allow simultaneous multiplatform installation, new tools for, and i ..."
Abstract

Cited by 53 (2 self)
 Add to MetaCart
Abstract. The initial release of CUTE, a widely used testing environment for optimization software was described in [2]. The latest version, now known as CUTEr is presented. New features include reorganisation of the environment to allow simultaneous multiplatform installation, new tools for, and interfaces to, optimization packages, and a considerably simplified and entirely automated installation procedure for unix systems. The SIF decoder, which used to be a part of CUTE, has become a separate tool, easily callable by various packages. It features simple extensions to the SIF test problem format and the generation of files suited to automatic differentiation packages. Key words. Nonlinear constrained optimization, testing environment, shared filesystems, heterogeneous environment, SIF format 1.
On the solution of equality constrained quadratic programming problems arising . . .
, 1998
"... ..."
TrustRegion InteriorPoint SQP Algorithms For A Class Of Nonlinear Programming Problems
 SIAM J. CONTROL OPTIM
, 1997
"... In this paper a family of trustregion interiorpoint SQP algorithms for the solution of a class of minimization problems with nonlinear equality constraints and simple bounds on some of the variables is described and analyzed. Such nonlinear programs arise e.g. from the discretization of optimal co ..."
Abstract

Cited by 35 (8 self)
 Add to MetaCart
In this paper a family of trustregion interiorpoint SQP algorithms for the solution of a class of minimization problems with nonlinear equality constraints and simple bounds on some of the variables is described and analyzed. Such nonlinear programs arise e.g. from the discretization of optimal control problems. The algorithms treat states and controls as independent variables. They are designed to take advantage of the structure of the problem. In particular they do not rely on matrix factorizations of the linearized constraints, but use solutions of the linearized state equation and the adjoint equation. They are well suited for large scale problems arising from optimal control problems governed by partial differential equations. The algorithms keep strict feasibility with respect to the bound constraints by using an affine scaling method proposed for a different class of problems by Coleman and Li and they exploit trustregion techniques for equalityconstrained optimizatio...
Global Convergence of TrustRegion SQPFilter Algorithms for General Nonlinear Programming
, 1999
"... Global convergence to firstorder critical points is proved for two trustregion SQPfilter algorithms of the type introduced by Fletcher and Leyffer (1997). The algorithms allow for an approximate solution of the quadratic subproblem and incorporate the safeguarding tests described in Fletcher, Ley ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
Global convergence to firstorder critical points is proved for two trustregion SQPfilter algorithms of the type introduced by Fletcher and Leyffer (1997). The algorithms allow for an approximate solution of the quadratic subproblem and incorporate the safeguarding tests described in Fletcher, Leyffer and Toint (1998). The first algorithm decomposes the step into its normal and tangential components, while the second replaces this decomposition by a stronger condition on the associated model decrease. 1 Department of Mathematics, University of Dundee, Dundee, DD1 4HN, Scotland, EU. Email : fletcher@mcs.dundee.ac.uk, sleyffer@mcs.dundee.ac.uk 2 Current reports available from "http://www.mcs.dundee.ac.uk:8080/~dfg/Narep.html". 3 Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, England, EU. Email : n.gould@rl.ac.uk 4 Current reports available from "http://www.numerical.rl.ac.uk/reports/reports.html". 5 Department ...
InexactRestoration Algorithm for Constrained Optimization
 Journal of Optimization Theory and Applications
, 1999
"... We introduce a new model algorithm for solving nonlinear programming problems. No slack variables are introduced for dealing with inequality constraints. Each iteration of the method proceeds in two phases. In the first phase, feasibility of the current iterate is improved and in second phase the ob ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
We introduce a new model algorithm for solving nonlinear programming problems. No slack variables are introduced for dealing with inequality constraints. Each iteration of the method proceeds in two phases. In the first phase, feasibility of the current iterate is improved and in second phase the objective function value is reduced in an approximate feasible set. The point that results from the second phase is compared with the current point using a nonsmooth merit function that combines feasibility and optimality. This merit function includes a penalty parameter that changes between different iterations. A suitable updating procedure for this penalty parameter is included by means of which it can be increased or decreased along different iterations. The conditions for feasibility improvement at the first phase and for optimality improvement at the second phase are mild, and largescale implementations of the resulting method are possible. We prove that under suitable conditions, that ...
Analysis of Inexact TrustRegion InteriorPoint SQP Algorithms
, 1995
"... In this paper we analyze inexact trustregion interiorpoint (TRIP) sequential quadratic programming (SQP) algorithms for the solution of optimization problems with nonlinear equality constraints and simple bound constraints on some of the variables. Such problems arise in many engineering applicati ..."
Abstract

Cited by 11 (7 self)
 Add to MetaCart
In this paper we analyze inexact trustregion interiorpoint (TRIP) sequential quadratic programming (SQP) algorithms for the solution of optimization problems with nonlinear equality constraints and simple bound constraints on some of the variables. Such problems arise in many engineering applications, in particular in optimal control problems with bounds on the control. The nonlinear constraints often come from the discretization of partial differential equations. In such cases the calculation of derivative information and the solution of linearized equations is expensive. Often, the solution of linear systems and derivatives are computed inexactly yielding nonzero residuals. This paper analyzes the effect of the inexactness onto the convergence of TRIP SQP and gives practical rules to control the size of the residuals of these inexact calculations. It is shown that if the size of the residuals is of the order of both the size of the constraints and the trustregion radius, t...
Inexact SQP methods for equality constrained optimization
 SIAM J. Opt
"... Abstract. We present an algorithm for largescale equality constrained optimization. The method is based on a characterization of inexact sequential quadratic programming (SQP) steps that can ensure global convergence. Inexact SQP methods are needed for largescale applications for which the iterati ..."
Abstract

Cited by 10 (6 self)
 Add to MetaCart
Abstract. We present an algorithm for largescale equality constrained optimization. The method is based on a characterization of inexact sequential quadratic programming (SQP) steps that can ensure global convergence. Inexact SQP methods are needed for largescale applications for which the iteration matrix cannot be explicitly formed or factored and the arising linear systems must be solved using iterative linear algebra techniques. We address how to determine when a given inexact step makes sufficient progress toward a solution of the nonlinear program, as measured by an exact penalty function. The method is globalized by a line search. An analysis of the global convergence properties of the algorithm and numerical results are presented. Key words. largescale optimization, constrained optimization, sequential quadratic programming, inexact linear system solvers, Krylov subspace methods AMS subject classifications. 49M37, 65K05, 90C06, 90C30, 90C55 1. Introduction. In