Results 1  10
of
42
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 509 (23 self)
 Add to MetaCart
(Show Context)
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse. We discuss
An interior point algorithm for largescale nonlinear . . .
, 2002
"... Nonlinear programming (NLP) has become an essential tool in process engineering, leading to prot gains through improved plant designs and better control strategies. The rapid advance in computer technology enables engineers to consider increasingly complex systems, where existing optimization codes ..."
Abstract

Cited by 59 (3 self)
 Add to MetaCart
Nonlinear programming (NLP) has become an essential tool in process engineering, leading to prot gains through improved plant designs and better control strategies. The rapid advance in computer technology enables engineers to consider increasingly complex systems, where existing optimization codes reach their practical limits. The objective of this dissertation is the design, analysis, implementation, and evaluation of a new NLP algorithm that is able to overcome the current bottlenecks, particularly in the area of process engineering. The proposed algorithm follows an interior point approach, thereby avoiding the combinatorial complexity of identifying the active constraints. Emphasis is laid on exibility in the computation of search directions, which allows the tailoring of the method to individual applications and is mandatory for the solution of very large problems. In a fullspace version the method can be used as general purpose NLP solver, for example in modeling environments such as Ampl. The reduced space version, based on coordinate decomposition, makes it possible to tailor linear algebra
TrustRegion InteriorPoint SQP Algorithms For A Class Of Nonlinear Programming Problems
 SIAM J. CONTROL OPTIM
, 1997
"... In this paper a family of trustregion interiorpoint SQP algorithms for the solution of a class of minimization problems with nonlinear equality constraints and simple bounds on some of the variables is described and analyzed. Such nonlinear programs arise e.g. from the discretization of optimal co ..."
Abstract

Cited by 43 (9 self)
 Add to MetaCart
(Show Context)
In this paper a family of trustregion interiorpoint SQP algorithms for the solution of a class of minimization problems with nonlinear equality constraints and simple bounds on some of the variables is described and analyzed. Such nonlinear programs arise e.g. from the discretization of optimal control problems. The algorithms treat states and controls as independent variables. They are designed to take advantage of the structure of the problem. In particular they do not rely on matrix factorizations of the linearized constraints, but use solutions of the linearized state equation and the adjoint equation. They are well suited for large scale problems arising from optimal control problems governed by partial differential equations. The algorithms keep strict feasibility with respect to the bound constraints by using an affine scaling method proposed for a different class of problems by Coleman and Li and they exploit trustregion techniques for equalityconstrained optimizatio...
SQP Methods And Their Application To Numerical Optimal Control
, 1997
"... . In recent years, generalpurpose sequential quadratic programming (SQP) methods have been developed that can reliably solve constrained optimization problems with many hundreds of variables and constraints. These methods require remarkably few evaluations of the problem functions and can be shown ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
. In recent years, generalpurpose sequential quadratic programming (SQP) methods have been developed that can reliably solve constrained optimization problems with many hundreds of variables and constraints. These methods require remarkably few evaluations of the problem functions and can be shown to converge to a solution under very mild conditions on the problem. Some practical and theoretical aspects of applying generalpurpose SQP methods to optimal control problems are discussed, including the influence of the problem discretization and the zero/nonzero structure of the problem derivatives. We conclude with some recent approaches that tailor the SQP method to the control problem. Key words. largescale optimization, sequential quadratic programming (SQP) methods, optimal control problems, multiple shooting methods, single shooting methods, collocation methods AMS subject classifications. 49J20, 49J15, 49M37, 49D37, 65F05, 65K05, 90C30 1. Introduction. Recently there has been c...
Theory and implementation of numerical methods based on RungeKutta integration for solving optimal control problems
, 1996
"... ..."
Advances in Simultaneous Strategies for Dynamic Process Optimization
 Optimization, Chemical Engineering Science
, 2001
"... Introduction Over the past decade, applications in dynamic simulation have increased signicantly in the process industries. These are driven by strong competitive markets faced by operating companies along with tighter specications on process performance and regulatory limits. Moreover, the develop ..."
Abstract

Cited by 29 (7 self)
 Add to MetaCart
(Show Context)
Introduction Over the past decade, applications in dynamic simulation have increased signicantly in the process industries. These are driven by strong competitive markets faced by operating companies along with tighter specications on process performance and regulatory limits. Moreover, the developmentofpowerful commercial modeling tools for dynamic simulation, such as ASPEN Custom # ####### ########################## #### ############### ################### 1 Modeler and gProms, has led to their introduction in industry alongside their widely used steady state counterparts. Dynamic optimization is the natural extension of these dynamic simulation tools because it automates many of the decisions required for engineering studies. Applications of dynamic simulation can be classied into oline and online tasks. Oline tasks include: # Design to avoid undesirable transients for chemical process
An Interface Between Optimization and Application for the Numerical Solution of Optimal Control Problems
 ACM Transactions on Mathematical Software
, 1998
"... This paper is concerned with the implementation of optimization algorithms for the solution of smooth discretized optimal control problems. The problems under consideration can be written as min f(y; u) ..."
Abstract

Cited by 15 (7 self)
 Add to MetaCart
This paper is concerned with the implementation of optimization algorithms for the solution of smooth discretized optimal control problems. The problems under consideration can be written as min f(y; u)
A.: On the string averaging method for sparse common fixed points problems
 Int. Trans. Oper. Res
, 2009
"... We study the common fixed points problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We propose a definition of sparseness of a family of operators and investigate a stringaveraging algorithmic sche ..."
Abstract

Cited by 12 (11 self)
 Add to MetaCart
(Show Context)
We study the common fixed points problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We propose a definition of sparseness of a family of operators and investigate a stringaveraging algorithmic scheme that favorably handles the common fixed points problem when the family of operators is sparse. The convex feasibility problem is treated as a special case and a new subgradient projections algorithmic scheme is obtained. 1
A Reduced Space Interior Point Strategy for Optimization of Differential Algebraic Systems
 Computers & Chemical Engineering
, 1999
"... A novel nonlinear programming (NLP) strategy is developed and applied to the optimization of differential algebraic equation (DAE) systems. Such problems, also referred to as dynamic optimization problems, are common in chemical process engineering and remain challenging applications of nonlinear pr ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
(Show Context)
A novel nonlinear programming (NLP) strategy is developed and applied to the optimization of differential algebraic equation (DAE) systems. Such problems, also referred to as dynamic optimization problems, are common in chemical process engineering and remain challenging applications of nonlinear programming. These applications often consist of large, complex nonlinear models that result from discretizations of DAEs. Variables in the NLP model include state and control variables, with far fewer control variables than states. Moreover, all of these discretized variables have associated upper and lower bounds which can be potentially active. To deal with this large, highly constrained problem, an interior point NLP strategy is developed. Here a log barrier function is used to deal with the large number of bound constraints in order to transform the problem to an equality constrained NLP. A modified Newton method is then applied directly to this problem. In addition, this method uses an efficient decomposition of the discretized DAEs and the solution of the Newton step is performed in the reduced space of the independent variables. The resulting approach exploits many of the features of the DAE system and is performed element by element in a forward manner. Several large dynamic process optimization problems are considered to demonstrate the effectiveness of this approach; these include complex separation and reaction processes (including reactive distillation) with several hundred DAEs. NLP formulations with over 55,000 variables are considered. These problems are solved in 5 to 12 CPU minutes on small workstations. Key words: interior point; dynamic optimization; nonlinear programming 1 1