Results 1  10
of
70
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 797 (12 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
The geometry of graphs and some of its algorithmic applications
 Combinatorica
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that r ..."
Abstract

Cited by 457 (19 self)
 Add to MetaCart
In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that respect the metric of the (possibly weighted) graph. Given a graph G we map its vertices to a normed space in an attempt to (i) Keep down the dimension of the host space and (ii) Guarantee a small distortion, i.e., make sure that distances between vertices in G closely match the distances between their geometric images. In this paper we develop efficient algorithms for embedding graphs lowdimensionally with a small distortion. Further algorithmic applications include: 0 A simple, unified approach to a number of problems on multicommodity flows, including the LeightonRae Theorem [29] and some of its extensions. 0 For graphs embeddable in lowdimensional spaces with a small distortion, we can find lowdiameter decompositions (in the sense of [4] and [34]). The parameters of the decomposition depend only on the dimension and the distortion and not on the size of the graph. 0 In graphs embedded this way, small balanced separators can be found efficiently. Faithful lowdimensional representations of statistical data allow for meaningful and efficient clustering, which is one of the most basic tasks in patternrecognition. For the (mostly heuristic) methods used
A Decomposition of MultiDimensional Point Sets with Applications to kNearestNeighbors and nBody Potential Fields
 J. ACM
, 1992
"... We define the notion of a wellseparated pair decomposition of points in ddimensional space. We then develop efficient sequential and parallel algorithms for computing such a decomposition. We apply the resulting decomposition to the efficient computation of knearest neighbors and nbody potential ..."
Abstract

Cited by 244 (4 self)
 Add to MetaCart
We define the notion of a wellseparated pair decomposition of points in ddimensional space. We then develop efficient sequential and parallel algorithms for computing such a decomposition. We apply the resulting decomposition to the efficient computation of knearest neighbors and nbody potential fields.
Mesh Generation And Optimal Triangulation
, 1992
"... We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some cri ..."
Abstract

Cited by 180 (8 self)
 Add to MetaCart
We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some criterion that measures the size, shape, or number of triangles. We discuss algorithms both for the optimization of triangulations on a fixed set of vertices and for the placement of new vertices (Steiner points). We briefly survey the heuristic algorithms used in some practical mesh generators.
Faster ShortestPath Algorithms for Planar Graphs
 STOC 94
, 1994
"... We give a lineartime algorithm for singlesource shortest paths in planar graphs with nonnegative edgelengths. Our algorithm also yields a lineartime algorithm for maximum flow in a planar graph with the source and sink on the same face. The previous best algorithms for these problems required\O ..."
Abstract

Cited by 167 (14 self)
 Add to MetaCart
We give a lineartime algorithm for singlesource shortest paths in planar graphs with nonnegative edgelengths. Our algorithm also yields a lineartime algorithm for maximum flow in a planar graph with the source and sink on the same face. The previous best algorithms for these problems required\Omega\Gamma n p log n) time where n is the number of nodes in the input graph. For the case where negative edgelengths are allowed, we give an algorithm requiring O(n 4=3 log nL) time, where L is the absolute value of the most negative length. Previous algorithms for shortest paths with negative edgelengths required \Omega\Gamma n 3=2 ) time. Our shortestpath algorithm yields an O(n 4=3 log n)time algorithm for finding a perfect matching in a planar bipartite graph. A similar improvement is obtained for maximum flow in a directed planar graph.
Spectral Partitioning Works: Planar graphs and finite element meshes
 In IEEE Symposium on Foundations of Computer Science
, 1996
"... Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extr ..."
Abstract

Cited by 144 (8 self)
 Add to MetaCart
Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on boundeddegree planar graphs and finite element meshes the classes of graphs to which they are usually applied. While naive spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O( p n) for boundeddegree planar graphs and twodimensional meshes and O i n 1=d j for wellshaped ddimensional meshes. The heart of our analysis is an upper bound on the secondsmallest eigenvalues of the Laplacian matrices of these graphs. 1. Introduction Spectral partitioning has become one of the mos...
METIS  Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 2.0
, 1995
"... this paper is organized as follows: Section 2 briefly describes the various ideas and algorithms implemented in METIS. Section 3 describes the user interface to the METIS graph partitioning and sparse matrix ordering packages. Sections 4 and 5 describe the formats of the input and output files used ..."
Abstract

Cited by 122 (5 self)
 Add to MetaCart
this paper is organized as follows: Section 2 briefly describes the various ideas and algorithms implemented in METIS. Section 3 describes the user interface to the METIS graph partitioning and sparse matrix ordering packages. Sections 4 and 5 describe the formats of the input and output files used by METIS. Section 6 describes the standalone library that implements the various algorithms implemented in METIS. Section 7 describes the system requirements for the METIS package. Appendix A describes and compares various graph partitioning algorithms that are extensively used.
Analysis of multilevel graph partitioning
, 1995
"... Recently, a number of researchers have investigated a class of algorithms that are based on multilevel graph partitioning that have moderate computational complexity, and provide excellent graph partitions. However, there exists little theoretical analysis that could explain the ability of multileve ..."
Abstract

Cited by 90 (14 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of algorithms that are based on multilevel graph partitioning that have moderate computational complexity, and provide excellent graph partitions. However, there exists little theoretical analysis that could explain the ability of multilevel algorithms to produce good partitions. In this paper we present such an analysis. We show under certain reasonable assumptions that even if no refinement is used in the uncoarsening phase, a good bisection of the coarser graph is worse than a good bisection of the finer graph by at most a small factor. We also show that the size of a good vertexseparator of the coarse graph projected to the finer graph (without performing refinement in the uncoarsening phase) is higher than the size of a good vertexseparator of the finer graph by at most a small factor.
Separators for spherepackings and nearest neighbor graphs
 J. ACM
, 1997
"... Abstract. A collection of n balls in d dimensions forms a kply system if no point in the space is covered by more than k balls. We show that for every kply system �, there is a sphere S that intersects at most O(k 1/d n 1�1/d) balls of � and divides the remainder of � into two parts: those in the ..."
Abstract

Cited by 74 (7 self)
 Add to MetaCart
Abstract. A collection of n balls in d dimensions forms a kply system if no point in the space is covered by more than k balls. We show that for every kply system �, there is a sphere S that intersects at most O(k 1/d n 1�1/d) balls of � and divides the remainder of � into two parts: those in the interior and those in the exterior of the sphere S, respectively, so that the larger part contains at most (1 � 1/(d � 2))n balls. This bound of O(k 1/d n 1�1/d) is the best possible in both n and k. We also present a simple randomized algorithm to find such a sphere in O(n) time. Our result implies that every knearest neighbor graphs of n points in d dimensions has a separator of size O(k 1/d n 1�1/d). In conjunction with a result of Koebe that every triangulated planar graph is isomorphic to the intersection graph of a diskpacking, our result not only gives a new geometric proof of the planar separator theorem of Lipton and Tarjan, but also generalizes it to higher dimensions. The separator algorithm can be used for point location and geometric divide and conquer in a fixed dimensional space.