Results 1  10
of
468
Toward Principles for the Design of Ontologies Used for Knowledge Sharing
 IN FORMAL ONTOLOGY IN CONCEPTUAL ANALYSIS AND KNOWLEDGE REPRESENTATION, KLUWER ACADEMIC PUBLISHERS, IN PRESS. SUBSTANTIAL REVISION OF PAPER PRESENTED AT THE INTERNATIONAL WORKSHOP ON FORMAL ONTOLOGY
, 1993
"... Recent work in Artificial Intelligence is exploring the use of formal ontologies as a way of specifying contentspecific agreements for the sharing and reuse of knowledge among software entities. We take an engineering perspective on the development of such ontologies. Formal ontologies are viewed a ..."
Abstract

Cited by 1340 (3 self)
 Add to MetaCart
Recent work in Artificial Intelligence is exploring the use of formal ontologies as a way of specifying contentspecific agreements for the sharing and reuse of knowledge among software entities. We take an engineering perspective on the development of such ontologies. Formal ontologies are viewed as designed artifacts, formulated for specific purposes and evaluated against objective design criteria. We describe the role of ontologies in supporting knowledge sharing activities, and then present a set of criteria to guide the development of ontologies for these purposes. We show how these criteria are applied in case studies from the design of ontologies for engineering mathematics and bibliographic data. Selected design decisions are discussed, and alternative representation choices and evaluated against the design criteria.
Temporal and modal logic
 HANDBOOK OF THEORETICAL COMPUTER SCIENCE
, 1995
"... We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic. ..."
Abstract

Cited by 1107 (16 self)
 Add to MetaCart
We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic.
Logical foundations of objectoriented and framebased languages
 JOURNAL OF THE ACM
, 1995
"... We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, ..."
Abstract

Cited by 763 (59 self)
 Add to MetaCart
We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, encapsulation, and others. In a sense, Flogic stands in the same relationship to the objectoriented paradigm as classical predicate calculus stands to relational programming. Flogic has a modeltheoretic semantics and a sound and complete resolutionbased proof theory. A small number of fundamental concepts that come from objectoriented programming have direct representation in Flogic; other, secondary aspects of this paradigm are easily modeled as well. The paper also discusses semantic issues pertaining to programming with a deductive objectoriented language based on a subset of Flogic.
Automating the Design of Graphical Presentations of Relational Information
 ACM Transactions on Graphics
, 1986
"... The goal of the research described in this paper is to develop an applicationindependent presentation tool that automatically designs effective graphical presentations (such as bar charts, scatter plots, and connected graphs) of relational information. Two problems are raised by this goal: The codi ..."
Abstract

Cited by 391 (5 self)
 Add to MetaCart
The goal of the research described in this paper is to develop an applicationindependent presentation tool that automatically designs effective graphical presentations (such as bar charts, scatter plots, and connected graphs) of relational information. Two problems are raised by this goal: The codification of graphic design criteria in a form that can be used by the presentation tool, and the generation of a wide variety of designs so that the presentation tool can accommodate a wide variety of information. The approach described in this paper is based on the view that graphical presentations are sentences of graphical languages. The graphic design issues are codified as expressiveness and effectiveness criteria for graphical languages. Expressiveness criteria determine whether a graphical language can express the desired information. Effectiveness criteria determine whether a graphical language exploits the capabilities of the output medium and the human visual system. A wide variety of designs can be systematically generated by using a composition algebra that composes a small set of primitive graphical languages. Artificial intelligence techniques are used to implement a prototype presentation tool called APT (A Presentation Tool), which is based on the composition algebra and the graphic design criteria.
Ontology Mapping: The State of the Art
, 2003
"... Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the ta ..."
Abstract

Cited by 301 (9 self)
 Add to MetaCart
Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mappings has been the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping.
Complexity of Answering Queries Using Materialized Views
 In PODS
, 1998
"... We study the complexity of the problem of answering queries using materialized views. This problem has attracted a lot of attention recently because of its relevance in data integration. Previous work considered only conjunctive view definitions. We examine the consequences of allowing more expressi ..."
Abstract

Cited by 284 (5 self)
 Add to MetaCart
We study the complexity of the problem of answering queries using materialized views. This problem has attracted a lot of attention recently because of its relevance in data integration. Previous work considered only conjunctive view definitions. We examine the consequences of allowing more expressive view definition languages. The languageswe consider for view definitions and user queries are: conjunctive queries with inequality, positive queries, datalog, and firstorder logic. We show that the complexity of the problem depends on whether views are assumed to store all the tuples that satisfy the view definition, or only a subset of it. Finally, we apply the results to the view consistency and view selfmaintainability problems which arise in data warehousing. 1 Introduction The notion of materialized view is essential in databases [34] and is attracting more and more attention with the popularity of data warehouses [28]. The problem of answering queries using materialized views [24...
An Analysis of FirstOrder Logics of Probability
 Artificial Intelligence
, 1990
"... : We consider two approaches to giving semantics to firstorder logics of probability. The first approach puts a probability on the domain, and is appropriate for giving semantics to formulas involving statistical information such as "The probability that a randomly chosen bird flies is greater than ..."
Abstract

Cited by 272 (18 self)
 Add to MetaCart
: We consider two approaches to giving semantics to firstorder logics of probability. The first approach puts a probability on the domain, and is appropriate for giving semantics to formulas involving statistical information such as "The probability that a randomly chosen bird flies is greater than .9." The second approach puts a probability on possible worlds, and is appropriate for giving semantics to formulas describing degrees of belief, such as "The probability that Tweety (a particular bird) flies is greater than .9." We show that the two approaches can be easily combined, allowing us to reason in a straightforward way about statistical information and degrees of belief. We then consider axiomatizing these logics. In general, it can be shown that no complete axiomatization is possible. We provide axiom systems that are sound and complete in cases where a complete axiomatization is possible, showing that they do allow us to capture a great deal of interesting reasoning about prob...
Relational Queries Computable in Polynomial Time
 Information and Control
, 1986
"... We characterize the polynomial time computable queries as those expressible in relational calculus plus a least fixed point operator and a total ordering on the universe. We also show that even without the ordering one application of fixed point suffices to express any query expressible with several ..."
Abstract

Cited by 269 (17 self)
 Add to MetaCart
We characterize the polynomial time computable queries as those expressible in relational calculus plus a least fixed point operator and a total ordering on the universe. We also show that even without the ordering one application of fixed point suffices to express any query expressible with several alternations of fixed point and negation. This proves that the fixed point query hierarchy suggested by Chandra and Harel collapses at the first fixed point level. It is also a general result showing that in finite model theory one application of fixed point suffices. Introduction and Summary Query languages for relational databases have received considerable attention. In 1972 Codd showed that two natural languages for queries  one algebraic and the other a version of first order predicate calculus  have identical powers of expressibility, [Cod72]. Query languages which are as expressive as Codd's Relational Calculus are sometimes called complete. This term is misleading however becau...
A framework for argumentationbased negotiation
 Proceedings of the 4th International Workshop on Agent Theories, Architectures, and Languages (ATAL97), volume 1365 of LNAI
, 1998
"... Abstract. Many autonomous agents operate in domains in which the cooperation of their fellow agents cannot be guaranteed. In such domains negotiation is essential to persuade others of the value of cooperation. This paper describes a general framework for negotiation in which agents exchange propos ..."
Abstract

Cited by 235 (39 self)
 Add to MetaCart
Abstract. Many autonomous agents operate in domains in which the cooperation of their fellow agents cannot be guaranteed. In such domains negotiation is essential to persuade others of the value of cooperation. This paper describes a general framework for negotiation in which agents exchange proposals backed by arguments which summarise the reasons why the proposals should be accepted. The argumentation is persuasive because the exchanges are able to alter the mental state of the agents involved. The framework is inspired by our work in the domain of business process management and is explained using examples from that domain. Keywords: Automated negotiation, Argumentation, Persuasion. 1
Languages That Capture Complexity Classes
 SIAM Journal of Computing
, 1987
"... this paper a series of languages adequate for expressing exactly those properties checkable in a series of computational complexity classes. For example, we show that a property of graphs (respectively groups, binary strings, etc.) is in polynomial time if and only if it is expressible in the first ..."
Abstract

Cited by 230 (21 self)
 Add to MetaCart
this paper a series of languages adequate for expressing exactly those properties checkable in a series of computational complexity classes. For example, we show that a property of graphs (respectively groups, binary strings, etc.) is in polynomial time if and only if it is expressible in the first order language of graphs (respectively groups, binary strings, etc.) together with a least fixed point operator. As another example, a property is in logspace if and only if it is expressible in first order logic together with a deterministic transitive closure operator. The roots of our approach to complexity theory go back to 1974 when Fagin showed that the NP properties are exactly those expressible in second order existential sentences. It follows that second order logic expresses exactly those properties which are in the polynomial time hierarchy. We show that adding suitable transitive closure operators to second order logic results in languages capturing polynomial space and exponential time, respectively. The existence of such natural languages for each important complexity class sheds a new light on complexity theory. These languages reaffirm the importance of the complexity classes as much more than machine dependent issues. Furthermore a whole new approach is suggested. Upper bounds (algorithms) can be produced by expressing the property of interest in one of our languages. Lower bounds may be demonstrated by showing that such expression is impossible.