Results 11  20
of
109
On Parallel Hashing and Integer Sorting
, 1991
"... The problem of sorting n integers from a restricted range [1::m], where m is superpolynomial in n, is considered. An o(n log n) randomized algorithm is given. Our algorithm takes O(n log log m) expected time and O(n) space. (Thus, for m = n polylog(n) we have an O(n log log n) algorithm.) The al ..."
Abstract

Cited by 25 (9 self)
 Add to MetaCart
The problem of sorting n integers from a restricted range [1::m], where m is superpolynomial in n, is considered. An o(n log n) randomized algorithm is given. Our algorithm takes O(n log log m) expected time and O(n) space. (Thus, for m = n polylog(n) we have an O(n log log n) algorithm.) The algorithm is parallelizable. The resulting parallel algorithm achieves optimal speed up. Some features of the algorithm make us believe that it is relevant for practical applications. A result of independent interest is a parallel hashing technique. The expected construction time is logarithmic using an optimal number of processors, and searching for a value takes O(1) time in the worst case. This technique enables drastic reduction of space requirements for the price of using randomness. Applicability of the technique is demonstrated for the parallel sorting algorithm, and for some parallel string matching algorithms. The parallel sorting algorithm is designed for a strong and non standard mo...
Information and Computation: Classical and Quantum Aspects
 REVIEWS OF MODERN PHYSICS
, 2001
"... Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportation, dense coding, and quantum cryptography are discussed as a few samples of the impact of quanta in the transmission of information. Quantum logic gates and quantum algorithms are also discussed as instances of the improvement in information processing by a quantum computer. We provide finally some examples of current experimental
An introduction to quantum complexity theory
 Collected Papers on Quantum Computation and Quantum Information Theory
, 2000
"... ..."
Primality testing using elliptic curves
 Journal of the Association for Computing Machinery
, 1999
"... ..."
The Generation of Random Numbers That Are Probably Prime
 Journal of Cryptology
, 1988
"... In this paper we make two observations on Rabin's probabilistic primality test. The first is a provocative reason why Rabin's test is so good. It turned out that a single iteration has a nonnegligible probability of failing _only_ on composite numbers that can actually be split in expected ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
In this paper we make two observations on Rabin's probabilistic primality test. The first is a provocative reason why Rabin's test is so good. It turned out that a single iteration has a nonnegligible probability of failing _only_ on composite numbers that can actually be split in expected polynomial time. Therefore, factoring would be easy if Rabin's test systematically failed with a 25% probability on each composite integer (which, of course, it does not). The second observation is more fundamental because is it _not_ restricted to primality testing: it has consequences for the entire field of probabilistic algorithms. The failure probability when using a probabilistic algorithm for the purpose of testing some property is compared with that when using it for the purpose of obtaining a random element hopefully having this property. More specifically, we investigate the question of how reliable Rabin's test is when used to _generate_ a random integer that is probably prime, rather than to _test_ a specific integer for primality.
Key words: factorization, false witnesses, primality testing, probabilistic algorithms, Rabin's test.
Fast Generation of Prime Numbers and Secure PublicKey Cryptographic Parameters
, 1995
"... A very efficient recursive algorithm for generating nearly random provable primes is presented. The expected time for generating a prime is only slightly greater than the expected time required for generating a pseudoprime of the same size that passes the MillerRabin test for only one base. The ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
A very efficient recursive algorithm for generating nearly random provable primes is presented. The expected time for generating a prime is only slightly greater than the expected time required for generating a pseudoprime of the same size that passes the MillerRabin test for only one base. Therefore our algorithm is even faster than presentlyused algorithms for generating only pseudoprimes because several MillerRabin tests with independent bases must be applied for achieving a sufficient confidence level. Heuristic arguments suggest that the generated primes are close to uniformly distributed over the set of primes in the specified interval. Security constraints on the prime parameters of certain cryptographic systems are discussed, and in particular a detailed analysis of the iterated encryption attack on the RSA publickey cryptosystem is presented. The prime generation algorithm can easily be modified to generate nearly random primes or RSAmoduli that satisfy t...
Proving primality in essentially quartic random time
 Math. Comp
, 2003
"... Abstract. This paper presents an algorithm that, given a prime n, finds and verifies a proof of the primality of n in random time (lg n) 4+o(1). Several practical speedups are incorporated into the algorithm and discussed in detail. 1. ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
Abstract. This paper presents an algorithm that, given a prime n, finds and verifies a proof of the primality of n in random time (lg n) 4+o(1). Several practical speedups are incorporated into the algorithm and discussed in detail. 1.
An overview of computational complexity
 Communications of the ACM
, 1983
"... foremost recognition of technical contributions to the computing community. The citation of Cook's achievements noted that "Dr. Cook has advanced our understanding of the complexity of computation in a significant and profound way. His seminal paper, The Complexity of Theorem Proving P ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
foremost recognition of technical contributions to the computing community. The citation of Cook's achievements noted that &quot;Dr. Cook has advanced our understanding of the complexity of computation in a significant and profound way. His seminal paper, The Complexity of Theorem Proving Procedures, presented at the 1971 ACM SIGACT Symposium on the Theory of Computing, laid the foundations for the theory of NPcompleteness. The ensuing exploration of the boundaries and nature of the NPcomplete class of problems has been one of the most active and important research activities in computer science for the last decade. Cook is well known for his influential results in fundamental areas of computer science. He has made significant contributions to complexity theory, to timespace tradeoffs in computation, and to logics for programming languages. His work is characterized by elegance and insights and has illuminated the very nature of computation.&quot; During 19701979, Cook did extensive work under grants from the