Results 1  10
of
1,070
The Nature of Statistical Learning Theory
, 1995
"... Abstract—Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on ..."
Abstract

Cited by 9023 (27 self)
 Add to MetaCart
Abstract—Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the developed theory were proposed. This made statistical learning theory not only a tool for the theoretical analysis but also a tool for creating practical algorithms for estimating multidimensional functions. This article presents a very general overview of statistical learning theory including both theoretical and algorithmic aspects of the theory. The goal of this overview is to demonstrate how the abstract learning theory established conditions for generalization which are more general than those discussed in classical statistical paradigms and how the understanding of these conditions inspired new algorithmic approaches to function estimation problems.
Generalized Additive Models
, 1990
"... Liklihood based regression models, such as the normal linear regression model and the linear logistic model, assume a linear (or some other parametric) form for the covariate effects. We introduce the Local Scotinq procedure which replaces the liner form C Xjpj by a sum of smooth functions C Sj(Xj)a ..."
Abstract

Cited by 1329 (34 self)
 Add to MetaCart
Liklihood based regression models, such as the normal linear regression model and the linear logistic model, assume a linear (or some other parametric) form for the covariate effects. We introduce the Local Scotinq procedure which replaces the liner form C Xjpj by a sum of smooth functions C Sj(Xj)a The Sj(.) ‘s are unspecified functions that are estimated using scatterplot smoothers. The technique is applicable to any likelihoodbased regression model: the class of Generalized Linear Models contains many of these. In this class, the Locul Scoring procedure replaces the linear predictor VI = C Xj@j by the additive predictor C ai ( hence, the name Generalized Additive Modeb. Local Scoring can also be applied to nonstandard models like Cox’s proportional hazards model for survival data. In a number of real data examples, the Local Scoring procedure proves to be useful in uncovering nonlinear covariate effects. It has the advantage of being completely automatic, i.e. no “detective work ” is needed on the part of the statistician. In a further generalization, the technique is modified to estimate the form of the link function for generalized linear models. The Local Scoring procedure is shown to be asymptotically equivalent to Local Likelihood estimation, another technique for estimating smooth covariate functions. They are seen to produce very similar results with real data, with Local Scoring being considerably faster. As a theoretical underpinning, we view Local Scoring and Local Likelihood as empirical maximizers of the ezpected loglikelihood, and this makes clear their connection to standard maximum likelihood estimation. A method for estimating the “degrees of freedom ” of the procedures is also given.
Shape Matching and Object Recognition Using Shape Contexts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract

Cited by 1255 (19 self)
 Add to MetaCart
We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform. In order to solve the correspondence problem, we attach a descriptor, the shape context, to each point. The shape context at a reference point captures the distribution of the remaining points relative to it, thus offering a globally discriminative characterization. Corresponding points on two similar shapes will have similar shape con texts, enabling us to solve for correspondences as an optimal assignment problem. Given the point correspondences, we estimate the transformation that best aligns the two shapes; reg ularized thin plate splines provide a flexible class of transformation maps for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning trans form. We treat recognition in a nearestneighbor classification framework as the problem of finding the stored prototype shape that is maximally similar to that in the image. Results are presented for silhouettes, trademarks, handwritten digits and the COIL dataset.
Image registration methods: a survey
 Image and Vision Computing
, 2003
"... This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align t ..."
Abstract

Cited by 404 (5 self)
 Add to MetaCart
This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align two images (the reference and sensed images). The reviewed approaches are classified according to their nature (areabased and featurebased) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping function design, and image transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas. q 2003 Elsevier B.V. All rights reserved.
Nonrigid registration using freeform deformations: Application to breast MR images
 IEEE Transactions on Medical Imaging
, 1999
"... Abstract — In this paper we present a new approach for the nonrigid registration of contrastenhanced breast MRI. A hierarchical transformation model of the motion of the breast has been developed. The global motion of the breast is modeled by an affine transformation while the local breast motion i ..."
Abstract

Cited by 377 (23 self)
 Add to MetaCart
Abstract — In this paper we present a new approach for the nonrigid registration of contrastenhanced breast MRI. A hierarchical transformation model of the motion of the breast has been developed. The global motion of the breast is modeled by an affine transformation while the local breast motion is described by a freeform deformation (FFD) based on Bsplines. Normalized mutual information is used as a voxelbased similarity measure which is insensitive to intensity changes as a result of the contrast enhancement. Registration is achieved by minimizing a cost function, which represents a combination of the cost associated with the smoothness of the transformation and the cost associated with the image similarity. The algorithm has been applied to the fully automated registration of threedimensional (3D) breast MRI in volunteers and patients. In particular, we have compared the results of the proposed nonrigid registration algorithm to those obtained using rigid and affine registration techniques. The results clearly indicate that the nonrigid registration algorithm is much better able to recover the motion and deformation of the breast than rigid or affine registration algorithms. I.
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract

Cited by 369 (0 self)
 Add to MetaCart
We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the family of radial basis kernels. It can also be used to define kernels in the form of joint Gibbs probability distributions. Kernels can be built from hidden Markov random elds, generalized regular expressions, pairHMMs, or ANOVA decompositions. Uses of the method lead to open problems involving the theory of infinitely divisible positive definite functions. Fundamentals of this theory and the theory of reproducing kernel Hilbert spaces are reviewed and applied in establishing the validity of the method.
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning al ..."
Abstract

Cited by 335 (13 self)
 Add to MetaCart
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can be obtained as special cases. We utilize properties of Reproducing Kernel Hilbert spaces to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in contrast to purely graphbased approaches) we obtain a natural outofsample extension to novel examples and so are able to handle both transductive and truly semisupervised settings. We present experimental evidence suggesting that our semisupervised algorithms are able to use unlabeled data effectively. Finally we have a brief discussion of unsupervised and fully supervised learning within our general framework.
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 314 (31 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
When Networks Disagree: Ensemble Methods for Hybrid Neural Networks
, 1993
"... This paper presents a general theoretical framework for ensemble methods of constructing significantly improved regression estimates. Given a population of regression estimators, we construct a hybrid estimator which is as good or better in the MSE sense than any estimator in the population. We argu ..."
Abstract

Cited by 290 (2 self)
 Add to MetaCart
This paper presents a general theoretical framework for ensemble methods of constructing significantly improved regression estimates. Given a population of regression estimators, we construct a hybrid estimator which is as good or better in the MSE sense than any estimator in the population. We argue that the ensemble method presented has several properties: 1) It efficiently uses all the networks of a population  none of the networks need be discarded. 2) It efficiently uses all the available data for training without overfitting. 3) It inherently performs regularization by smoothing in functional space which helps to avoid overfitting. 4) It utilizes local minima to construct improved estimates whereas other neural network algorithms are hindered by local minima. 5) It is ideally suited for parallel computation. 6) It leads to a very useful and natural measure of the number of distinct estimators in a population. 7) The optimal parameters of the ensemble estimator are given in clo...
Using the Nyström Method to Speed Up Kernel Machines
 Advances in Neural Information Processing Systems 13
, 2001
"... A major problem for kernelbased predictors (such as Support Vector Machines and Gaussian processes) is that the amount of computation required to find the solution scales as O(n ), where n is the number of training examples. We show that an approximation to the eigendecomposition of the Gram matrix ..."
Abstract

Cited by 285 (6 self)
 Add to MetaCart
A major problem for kernelbased predictors (such as Support Vector Machines and Gaussian processes) is that the amount of computation required to find the solution scales as O(n ), where n is the number of training examples. We show that an approximation to the eigendecomposition of the Gram matrix can be computed by the Nyström method (which is used for the numerical solution of eigenproblems). This is achieved by carrying out an eigendecomposition on a smaller system of size m < n, and then expanding the results back up to n dimensions. The computational complexity of a predictor using this approximation is O(m n). We report experiments on the USPS and abalone data sets and show that we can set m n without any significant decrease in the accuracy of the solution.