Results 1  10
of
331
Reinforcement Learning I: Introduction
, 1998
"... In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search ..."
Abstract

Cited by 5512 (123 self)
 Add to MetaCart
In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search) plus learning (association, memory). We argue that RL is the only field that seriously addresses the special features of the problem of learning from interaction to achieve longterm goals.
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1851 (44 self)
 Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leaveoneout method and the VCdimension are given. Experimental results on optical character recognition problems demonstrate the good generalization obtained when compared with other learning algorithms.
An introduction to kernelbased learning algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2001
"... This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and ..."
Abstract

Cited by 590 (54 self)
 Add to MetaCart
This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 397 (33 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
Shape representation in the inferior temporal cortex of monkeys
 Curr. Biol
, 1995
"... of monkeys ..."
Stability and Generalization
, 2001
"... We define notions of stability for learning algorithms and show how to use these notions to derive generalization error bounds based on the empirical error and the leaveoneout error. The methods we use can be applied in the regression framework as well as in the classification one when the classif ..."
Abstract

Cited by 260 (8 self)
 Add to MetaCart
We define notions of stability for learning algorithms and show how to use these notions to derive generalization error bounds based on the empirical error and the leaveoneout error. The methods we use can be applied in the regression framework as well as in the classification one when the classifier is obtained by thresholding a realvalued function. We study the stability properties of large classes of learning algorithms such as regularization based algorithms. In particular we focus on Hilbert space regularization and KullbackLeibler regularization. We demonstrate how to apply the results to SVM for regression and classification.
Person identification using multiple cues
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... AbstractThis paper presents a person identification system based on acoustic and visual features. The system is organized as a set of nonhomogeneous classifiers whose outputs are integrated after a normalization step. In particular, two classifiers based on acoustic features and three based on vis ..."
Abstract

Cited by 220 (1 self)
 Add to MetaCart
(Show Context)
AbstractThis paper presents a person identification system based on acoustic and visual features. The system is organized as a set of nonhomogeneous classifiers whose outputs are integrated after a normalization step. In particular, two classifiers based on acoustic features and three based on visual ones provide data for an integration module whose performance is evaluated. A novel technique for the integration of multiple classifiers at an hybrid ranWmeasurement level is introduced using HyperBF networks. Two different methods for the rejection of an unknown person are introduced. The performance of the integrated system is shown to be superior to that of the acoustic and visual subsystems. The resulting identification system can be used to log personal access and, with minor modifications, as an identity verification system. Index TennsTemplate matching, robust statistics, correlation, face recognition, speaker recognition, learning, classification. I.
A resourceallocating network for function interpolation
 Neural Computation
, 1991
"... We have created a network that allocates a new computational unit whenever an unusual pattern is presented to the network. This network forms compact representations, yet learns easily and rapidly. The network can be used at any time in the learning process and the learning patterns do not have to b ..."
Abstract

Cited by 217 (2 self)
 Add to MetaCart
(Show Context)
We have created a network that allocates a new computational unit whenever an unusual pattern is presented to the network. This network forms compact representations, yet learns easily and rapidly. The network can be used at any time in the learning process and the learning patterns do not have to be repeated. The units in this network respond to only a local region of the space of input values. The network learns by allocating new units and adjusting the parameters of existing units. If the network performs poorly on a presented pattern, then a new unit is allocated which corrects the response to the presented pattern. If the network performs well on a presented pattern, then the network parameters are updated using standard LMS gradient descent. We have obtained good results with our resourceallocating network (RAN). For predicting the Mackey Glass chaotic time series, our network learns much faster than do those using backpropagation and uses a comparable number of synapses. 1
Nonlinear BlackBox Modeling in System Identification: a Unified Overview
 Automatica
, 1995
"... A nonlinear black box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest in this area with structures based on neural networks, radial basis networks, wavelet networks, hinging hyperplanes, ..."
Abstract

Cited by 213 (15 self)
 Add to MetaCart
(Show Context)
A nonlinear black box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest in this area with structures based on neural networks, radial basis networks, wavelet networks, hinging hyperplanes, as well as wavelet transform based methods and models based on fuzzy sets and fuzzy rules. This paper describes all these approaches in a common framework, from a user's perspective. It focuses on what are the common features in the different approaches, the choices that have to be made and what considerations are relevant for a successful system identification application of these techniques. It is pointed out that the nonlinear structures can be seen as a concatenation of a mapping from observed data to a regression vector and a nonlinear mapping from the regressor space to the output space. These mappings are discussed separately. The latter mapping is usually formed as a basis function e...
Constructive Incremental Learning from Only Local Information
, 1998
"... ... This article illustrates the potential learning capabilities of purely local learning and offers an interesting and powerful approach to learning with receptive fields. ..."
Abstract

Cited by 206 (39 self)
 Add to MetaCart
... This article illustrates the potential learning capabilities of purely local learning and offers an interesting and powerful approach to learning with receptive fields.