Results 1  10
of
153
A taxonomy and evaluation of dense twoframe stereo correspondence algorithms
 International Journal of Computer Vision
, 2002
"... Abstract. Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, twoframe ..."
Abstract

Cited by 1029 (21 self)
 Add to MetaCart
Abstract. Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, twoframe stereo methods. Our taxonomy is designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a standalone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms. We have also produced several new multiframe stereo data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a comparative evaluation of a large set of today’s bestperforming stereo algorithms.
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 386 (18 self)
 Add to MetaCart
. A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The latter relates to how data is observed and is problem domain dependent. The former depends on how various prior constraints are expressed. Markov Random Field Models (MRF) theory is a tool to encode contextual constraints into the prior probability. This paper presents a unified approach for MRF modeling in low and high level computer vision. The unification is made possible due to a recent advance in MRF modeling for high level object recognition. Such unification provides a systematic approach for vision modeling based on sound mathematical principles. 1 Introduction Since its beginning in early 1960's, computer vision research has been evolving from heuristic design of algorithms to syste...
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 309 (31 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
Regularization networks and support vector machines
 Advances in Computational Mathematics
, 2000
"... Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples – in particular the regression problem of approximating a multivariate function from sparse data. Radial Basis Functions, for example, are a special case of both regularization a ..."
Abstract

Cited by 266 (33 self)
 Add to MetaCart
Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples – in particular the regression problem of approximating a multivariate function from sparse data. Radial Basis Functions, for example, are a special case of both regularization and Support Vector Machines. We review both formulations in the context of Vapnik’s theory of statistical learning which provides a general foundation for the learning problem, combining functional analysis and statistics. The emphasis is on regression: classification is treated as a special case.
A generalized Gaussian image model for edgepreserving MAP estimation
 IEEE Trans. on Image Processing
, 1993
"... Absfrucf We present a Markov random field model which allows realistic edge modeling while providing stable maximum a posteriori MAP solutions. The proposed model, which we refer to as a generalized Gaussian Markov random field (GGMRF), is named for its similarity to the generalized Gaussian distri ..."
Abstract

Cited by 238 (34 self)
 Add to MetaCart
Absfrucf We present a Markov random field model which allows realistic edge modeling while providing stable maximum a posteriori MAP solutions. The proposed model, which we refer to as a generalized Gaussian Markov random field (GGMRF), is named for its similarity to the generalized Gaussian distribution used in robust detection and estimation. The model satisifies several desirable analytical and computational properties for MAP estimation, including continuous dependence of the estimate on the data, invariance of the character of solutions to scaling of data, and a solution which lies at the unique global minimum of the U posteriori loglikeihood function. The GGMRF is demonstrated to be useful for image reconstruction in lowdosage transmission tomography. I.
A Multiscale Random Field Model for Bayesian Image Segmentation
, 1996
"... Many approaches to Bayesian image segmentation have used maximum a posteriori (MAP) estimation in conjunction with Markov random fields (MRF). While this approach performs well, it has a number of disadvantages. In particular, exact MAP estimates cannot be computed, approximate MAP estimates are com ..."
Abstract

Cited by 233 (18 self)
 Add to MetaCart
Many approaches to Bayesian image segmentation have used maximum a posteriori (MAP) estimation in conjunction with Markov random fields (MRF). While this approach performs well, it has a number of disadvantages. In particular, exact MAP estimates cannot be computed, approximate MAP estimates are computationally expensive to compute, and unsupervised parameter estimation of the MRF is difficult. In this paper, we propose a new approach to Bayesian image segmentation which directly addresses these problems. The new method replaces the MRF model with a novel multiscale random field (MSRF), and replaces the MAP estimator with a sequential MAP (SMAP) estimator derived from a novel estimation criteria. Together, the proposed estimator and model result in a segmentation algorithm which is not iterative and can be computed in time proportional to MN where M is the number of classes and N is the number of pixels. We also develop a computationally effcient method for unsupervised estimation of m...
Constructing Simple Stable Descriptions for Image Partitioning
, 1994
"... A new formulation of the image partitioning problem is presented: construct a complete and stable description of an image, in terms of a specified descriptive language, that is simplest in the sense of being shortest. We show that a descriptive language limited to a loworder polynomial description ..."
Abstract

Cited by 223 (5 self)
 Add to MetaCart
A new formulation of the image partitioning problem is presented: construct a complete and stable description of an image, in terms of a specified descriptive language, that is simplest in the sense of being shortest. We show that a descriptive language limited to a loworder polynomial description of the intensity variation within each region and a chaincodelike description of the region boundaries yields intuitively satisfying partitions for a wide class of images. The advantage of this formulation is that it can be extended to deal with subsequent steps of the imageunderstanding problem (or to deal with other image attributes, such as texture) in a natural way by augmenting the descriptive language. Experiments performed on a variety of both real and synthetic images demonstrate the superior performance of this approach over partitioning techniques based on clustering vectors of local image attributes and standard edgedetection techniques. 1 Introduction The partitioning proble...
Kalman Filterbased Algorithms for Estimating Depth from Image Sequences
, 1989
"... Using known camera motion to estimate depth from image sequences is an important problem in robot vision. Many applications of depthfrommotion, including navigation and manipulation, require algorithms that can estimate depth in an online, incremental fashion. This requires a representation that ..."
Abstract

Cited by 214 (26 self)
 Add to MetaCart
Using known camera motion to estimate depth from image sequences is an important problem in robot vision. Many applications of depthfrommotion, including navigation and manipulation, require algorithms that can estimate depth in an online, incremental fashion. This requires a representation that records the uncertainty in depth estimates and a mechanism that integrates new measurements with existing depth estimates to reduce the uncertainty over time. Kalman filtering provides this mechanism. Previous applications of Kalman filtering to depthfrommotion have been limited to estimating depth at the location of a sparse set of features. In this paper, we introduce a new, pixelbased (iconic) algorithm that estimates depth and depth uncertainty at each pixel and incrementally refines these estimates over time. We describe the algorithm and contrast its formulation and performance to that of a featurebased Kalman filtering algorithm. We compare the performance of the two approaches by analyzing their theoretical convergence rates, by conducting quantitative experiments with images of a flat poster, and by conducting qualitative experiments with images of a realistic outdoorscene model. The results show that the new method is an effective way to extract depth from lateral camera translations. This approach can be extended to incorporate general motion and to integrate other sources of information, such as stereo. The algorithms we have developed, which combine Kalman filtering with iconic descriptions of depth, therefore can serve as a useful and general framework for lowlevel dynamic vision.
A Theory of Networks for Approximation and Learning
 Laboratory, Massachusetts Institute of Technology
, 1989
"... Learning an inputoutput mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multidimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, t ..."
Abstract

Cited by 194 (24 self)
 Add to MetaCart
Learning an inputoutput mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multidimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nonlinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. Wedevelop a theoretical framework for approximation based on regularization techniques that leads to a class of threelayer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the wellknown Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods suchasParzen windows and potential functions and to several neural network algorithms, suchas Kanerva's associative memory,backpropagation and Kohonen's topology preserving map. They also haveaninteresting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.
On the Unification Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision
, 1996
"... The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While "lineprocess" models of discontinuities have received a great deal of attention, there has been recent interest i ..."
Abstract

Cited by 190 (8 self)
 Add to MetaCart
The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While "lineprocess" models of discontinuities have received a great deal of attention, there has been recent interest in the use of robust statistical techniques to account for discontinuities. This paper unifies the two approaches. To achieve this we generalize the notion of a "line process" to that of an analog "outlier process" and show how a problem formulated in terms of outlier processes can be viewed in terms of robust statistics. We also characterize a class of robust statistical problems for which an equivalent outlierprocess formulation exists and give a straightforward method for converting a robust estimation problem into an outlierprocess formulation. We show how prior assumptions about the spatial structure of outliers can be expressed as constraints on the recovered analog outlier processes and how traditional continuation methods can be extended to the explicit outlierprocess formulation. These results indicate that the outlierprocess approach provides a general framework which subsumes the traditional lineprocess approaches as well as a wide class of robust estimation problems. Examples in surface reconstruction, image segmentation, and optical flow are presented to illustrate the use of outlier processes and to show how the relationship between outlier processes and robust statistics can be exploited. An appendix provides a catalog of common robust error norms and their equivalent outlierprocess formulations.