Results 1  10
of
66
Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach
, 1998
"... . The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a ..."
Abstract

Cited by 105 (15 self)
 Add to MetaCart
. The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation. Keywords. Bisimulation, probabilistic transition system, coalgebra, ultrametric space, Borel measure, final coalgebra. 1 Introduction For discrete probabilistic transition systems the notion of probabilistic bisimilarity of Larsen and Skou [LS91] is regarded as the basic process equivalence. The definition was given for reactive systems. However, Van Glabbeek, Smolka and Steffen s...
Retracing some paths in Process Algebra
"... Introduction 2 The semantic universe: transducers Similar ideas appeared independently in the work of Hans Bekic [Bek71]. Samson Abramsky Laboratory for the Foundations of Computer Science University of Edinburgh The very existence of the conference bears witness to the fact that "concurrency ..."
Abstract

Cited by 88 (19 self)
 Add to MetaCart
Introduction 2 The semantic universe: transducers Similar ideas appeared independently in the work of Hans Bekic [Bek71]. Samson Abramsky Laboratory for the Foundations of Computer Science University of Edinburgh The very existence of the conference bears witness to the fact that "concurrency theory" has developed into a subject unto itself, with substantially di#erent emphases and techniques to those prominent elsewhere in the semantics of computation. Whatever the past merits of this separate development, it seems timely to look for some convergence and unification. In addressing these issues, I have found it instructive to trace some of the received ideas in concurrency back to their origins in the early 1970's. In particular, I want to focus on a seminal paper by Robin Milner [Mil75] , which led in a fairly direct line to his enormously influential work on [Mil80, Mil89]. I will take (to the extreme) the liberty of of applying hindsight, and show how some di
Geometry of Interaction and Linear Combinatory Algebras
, 2000
"... this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years ea ..."
Abstract

Cited by 66 (11 self)
 Add to MetaCart
this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by Stefanescu (Stefanescu 2000).) However, the first author realized, following a stimulating discussion with Gordon Plotkin, that traced monoidal categories provided a common denominator for the axiomatics of both the Girardstyle and AbramskyJagadeesanstyle versions of the Geometry of Interaction, at the basic level of the multiplicatives. This insight was presented in (Abramsky 1996), in which Girardstyle GoI was dubbed "particlestyle", since it concerns information particles or tokens flowing around a network, while the AbramskyJagadeesan style GoI was dubbed "wavestyle", since it concerns the evolution of a global information state or "wave". Formally, this distinction is based on whether the tensor product (i.e. the symmetric monoidal structure) in the underlying category is interpreted as a coproduct (particle style) or as a product (wave style). This computational distinction between coproduct and product interpretations of the same underlying network geometry turned out to have been partially anticipated, in a rather di#erent context, in a pioneering paper by E. S. Bainbridge (Bainbridge 1976), as observed by Dusko Pavlovic. These two forms of interpretation, and ways of combining them, have also been studied recently in (Stefanescu 2000). He uses the terminology "additive" for coproductbased (i.e. our "particlestyle") and "multiplicative" for productbased (i.e. our "wavestyle"); this is not suitable for our purposes, because of the clash with Linear Logic term...
Nuclear and Trace Ideals in Tensored *Categories
, 1998
"... We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The comp ..."
Abstract

Cited by 39 (12 self)
 Add to MetaCart
We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The compact closed structure associated with the category of relations does not generalize directly, instead one obtains nuclear ideals. Most tensored categories have a large class of morphisms which behave as if they were part of a compact closed category, i.e. they allow one to transfer variables between the domain and the codomain. We introduce the notion of nuclear ideals to analyze these classes of morphisms. In compact closed tensored categories, all morphisms are nuclear, and in the tensored category of Hilbert spaces, the nuclear morphisms are the HilbertSchmidt maps. We also introduce two new examples of tensored categories, in which integration plays the role of composition. In the first, mor...
The SheafTheoretic Structure Of NonLocality and Contextuality
, 2011
"... Locality and noncontextuality are intuitively appealing features of classical physics, which are contradicted by quantum mechanics. The goal of the classic nogo theorems by Bell, KochenSpecker, et al. is to show that nonlocality and contextuality are necessary features of any theory whose predic ..."
Abstract

Cited by 36 (11 self)
 Add to MetaCart
Locality and noncontextuality are intuitively appealing features of classical physics, which are contradicted by quantum mechanics. The goal of the classic nogo theorems by Bell, KochenSpecker, et al. is to show that nonlocality and contextuality are necessary features of any theory whose predictions agree with those of quantum mechanics. We use the mathematics of sheaf theory to analyze the structure of nonlocality and contextuality in a very general setting. Starting from a simple experimental scenario, and the kind of probabilistic models familiar from discussions of Bell’s theorem, we show that there is a very direct, compelling formalization of these notions in sheaftheoretic terms. Moreover, on the basis of this formulation, we show that the phenomena of nonlocality and contextuality can be characterized precisely in terms of obstructions to the existence of global sections. We give linear algebraic methods for computing these obstructions, and use these methods to obtain a number of new insights into nonlocality and contextuality. For example, we distinguish a proper hierarchy of strengths of nogo theorems, and show that three leading examples — due to Bell, Hardy, and Greenberger, Horne and Zeilinger, respectively — occupy successively higher levels of this hierarchy. We show how our abstract setting can be represented in quantum mechanics. In doing so, we uncover a strengthening of the usual nosignalling theorem, which shows that quantum mechanics obeys nosignalling for arbitrary families of commuting observables, not just those represented on different factors of a tensor product.
A probabilistic language based upon sampling functions
 In Conference Record of the 32nd Annual ACM Symposium on Principles of Programming Languages
, 2005
"... As probabilistic computations play an increasing role in solving various problems, researchers have designed probabilistic languages which treat probability distributions as primitive datatypes. Most probabilistic languages, however, focus only on discrete distributions and have limited expressive p ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
(Show Context)
As probabilistic computations play an increasing role in solving various problems, researchers have designed probabilistic languages which treat probability distributions as primitive datatypes. Most probabilistic languages, however, focus only on discrete distributions and have limited expressive power. This paper presents a probabilistic language, called λ○, whose expressive power is beyond discrete distributions. Rich expressiveness of λ ○ is due to its use of sampling functions, i.e., mappings from the unit interval (0.0, 1.0] to probability domains, in specifying probability distributions. As such, λ ○ enables programmers to formally express and reason about sampling methods developed in simulation theory. The use of λ ○ is demonstrated with three applications in robotics: robot localization, people tracking, and robotic mapping. All experiments have been carried out with real robots.
Stochastic transition systems for continuous state spaces and nondeterminism
 In FoSSaCS’05, LNCS 3441
, 2005
"... Abstract. We study the interaction between nondeterministic and probabilistic behaviour in systems with continuous state spaces, arbitrary probability distributions and uncountable branching. Models of such systems have been proposed previously. Here, we introduce a model that extends probabilistic ..."
Abstract

Cited by 20 (4 self)
 Add to MetaCart
Abstract. We study the interaction between nondeterministic and probabilistic behaviour in systems with continuous state spaces, arbitrary probability distributions and uncountable branching. Models of such systems have been proposed previously. Here, we introduce a model that extends probabilistic automata to the continuous setting. We identify the class of schedulers that ensures measurability properties on executions, and show that such measurability properties are preserved by parallel composition. Finally, we demonstrate how these results allow us to define an alternative notion of weak bisimulation in our model. 1
An Intrinsic Characterization of Approximate Probabilistic Bisimilarity
 In: Proceedings of FOSSACS 03. LNCS
, 2003
"... Abstract. In previous work we have investigated a notion of approximate bisimilarity for labelled Markov processes. We argued that such a notion is more realistic and more feasible to compute than (exact) bisimilarity. The main technical tool used in the underlying theory was the Hutchinson metric o ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
(Show Context)
Abstract. In previous work we have investigated a notion of approximate bisimilarity for labelled Markov processes. We argued that such a notion is more realistic and more feasible to compute than (exact) bisimilarity. The main technical tool used in the underlying theory was the Hutchinson metric on probability measures. This paper gives a more fundamental characterization of approximate bisimilarity in terms of the notion of (exact) similarity. In particular, we show that the topology of approximate bisimilarity is the Lawson topology with respect to the simulation preorder. To complement this abstract characterization we give a statistical account of similarity, and by extension, of approximate bisimilarity, in terms of the process testing formalism of Larsen and Skou. 1
A probabilistic language based on sampling functions
 ACM Transactions on Programming Languages and Systems
, 2006
"... As probabilistic computations play an increasing role in solving various problems, researchers have designed probabilistic languages which treat probability distributions as primitive datatypes. Most probabilistic languages, however, focus only on discrete distributions and have limited expressive p ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
As probabilistic computations play an increasing role in solving various problems, researchers have designed probabilistic languages which treat probability distributions as primitive datatypes. Most probabilistic languages, however, focus only on discrete distributions and have limited expressive power. This article presents a probabilistic language, called λ○, whose expressive power is beyond discrete distributions. Rich expressiveness of λ ○ is due to its use of sampling functions, that is, mappings from the unit interval (0.0, 1.0] to probability domains, in specifying probability distributions. As such, λ ○ enables programmers to formally express and reason about sampling methods developed in simulation theory. The use of λ ○ is demonstrated with three applications in robotics: robot localization, people tracking, and robotic mapping. All experiments have been carried out with real robots.
Just do it: Simple monadic equational reasoning
 In Proceedings of the 16th International Conference on Functional Programming (ICFP’11
, 2011
"... One of the appeals of pure functional programming is that it is so amenable to equational reasoning. One of the problems of pure functional programming is that it rules out computational effects. Moggi and Wadler showed how to get round this problem by using monads to encapsulate the effects, leadin ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
(Show Context)
One of the appeals of pure functional programming is that it is so amenable to equational reasoning. One of the problems of pure functional programming is that it rules out computational effects. Moggi and Wadler showed how to get round this problem by using monads to encapsulate the effects, leading in essence to a phase distinction—a pure functional evaluation yielding an impure imperative computation. Still, it has not been clear how to reconcile that phase distinction with the continuing appeal of functional programming; does the impure imperative part become inaccessible to equational reasoning? We think not; and to back that up, we present a simple axiomatic approach to reasoning about programs with computational effects.