Results 1 
5 of
5
Convergence of spectra of graphlike thin manifolds
 J. Geom. Phys
"... Abstract. We consider a family of compact manifolds which shrinks with respect to an appropriate parameter to a graph. The main result is that the spectrum of the LaplaceBeltrami operator converges to the spectrum of the (differential) Laplacian on the graph with Kirchhoff boundary conditions at th ..."
Abstract

Cited by 36 (12 self)
 Add to MetaCart
(Show Context)
Abstract. We consider a family of compact manifolds which shrinks with respect to an appropriate parameter to a graph. The main result is that the spectrum of the LaplaceBeltrami operator converges to the spectrum of the (differential) Laplacian on the graph with Kirchhoff boundary conditions at the vertices. On the other hand, if the the shrinking at the vertex parts of the manifold is sufficiently slower comparing to that of the edge parts, the limiting spectrum corresponds to decoupled edges with Dirichlet boundary conditions at the endpoints. At the borderline between the two regimes we have a third possibility when the limiting spectrum can be described by a nontrivial coupling at the vertices. 1.
Spectral convergence of noncompact quasionedimensional spaces
 Ann. H. Poincaré
"... Abstract. We consider a family of noncompact manifolds Xε (“graphlike manifolds”) approaching a metric graph X0 and establish convergence results of the related natural operators, namely the (Neumann) Laplacian ∆ Xε and the generalised Neumann (Kirchhoff) Laplacian ∆ X0 on the metric graph. In par ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
(Show Context)
Abstract. We consider a family of noncompact manifolds Xε (“graphlike manifolds”) approaching a metric graph X0 and establish convergence results of the related natural operators, namely the (Neumann) Laplacian ∆ Xε and the generalised Neumann (Kirchhoff) Laplacian ∆ X0 on the metric graph. In particular, we show the norm convergence of the resolvents, spectral projections and eigenfunctions. As a consequence, the essential and the discrete spectrum converge as well. Neither the manifolds nor the metric graph need to be compact, we only need some natural uniformity assumptions. We provide examples of manifolds having spectral gaps in the essential spectrum, discrete eigenvalues in the gaps or even manifolds approaching a fractal spectrum. The convergence results will be given in a completely abstract setting dealing with operators acting in different spaces, applicable also in other geometric situations. 1.
Eigenvalue bracketing for discrete and metric graphs
 J. Math. Anal. Appl
"... Abstract. We develop eigenvalue estimates for the Laplacians on discrete and metric graphs using different types of boundary conditions at the vertices of the metric graph. Via an explicit correspondence of the equilateral metric and discrete graph spectrum (also in the “exceptional” values of the m ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We develop eigenvalue estimates for the Laplacians on discrete and metric graphs using different types of boundary conditions at the vertices of the metric graph. Via an explicit correspondence of the equilateral metric and discrete graph spectrum (also in the “exceptional” values of the metric graph corresponding to the Dirichlet spectrum) we carry over these estimates from the metric graph Laplacian to the discrete case. We apply the results to covering graphs and present examples where the covering graph Laplacians have spectral gaps. 1.
Existence of spectral gaps, covering manifolds and residually finite groups
, 2007
"... In the present paper we consider Riemannian coverings (X, g) → (M, g) with residually finite covering group Γ and compact base space (M, g). In particular, we give two general procedures resulting in a family of deformed coverings (X, gε) → (M, gε) such that the spectrum of the Laplacian ∆ (Xε,gε) ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
In the present paper we consider Riemannian coverings (X, g) → (M, g) with residually finite covering group Γ and compact base space (M, g). In particular, we give two general procedures resulting in a family of deformed coverings (X, gε) → (M, gε) such that the spectrum of the Laplacian ∆ (Xε,gε) has at least a prescribed finite number of spectral gaps provided ε is small enough. If Γ has a positive Kadison constant, then we can apply results by Brüning and Sunada to deduce that spec ∆ (X,gε) has, in addition, bandstructure and there is an asymptotic estimate for the number N(λ) of components of spec ∆ (X,gε) that intersect the interval [0, λ]. We also present several classes of examples of residually finite groups that fit with our construction and study their interrelations. Finally, we mention several possible applications for our results.
EXISTENCE OF THE EHRESMANN CONNECTION ON A MANIFOLD FOLIATED BY THE LOCALLY FREE ACTION OF A COMMUTATIVE LIE GROUP
, 2004
"... Abstract. In this paper the author determines necessary and sufficient conditions for existence of the Eif hresmann connection on a manifold foliated by locally free action of the commutative Lie group. Also here we describe structure of C0(M)L for a leaf L ⊂ M in case such a connection exists. Fin ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. In this paper the author determines necessary and sufficient conditions for existence of the Eif hresmann connection on a manifold foliated by locally free action of the commutative Lie group. Also here we describe structure of C0(M)L for a leaf L ⊂ M in case such a connection exists. Finally we give some results on structure of the spectrum of the family of Schrödinger operators related to the leaves of the foliation.