Results 1  10
of
82
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 683 (21 self)
 Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approaches such as the DavisPutnam procedure or resolution. We also show that GSAT can solve structured satisfiability problems quickly. In particular, we solve encodings of graph coloring problems, Nqueens, and Boolean induction. General application strategies and limitations of the approach are also discussed. GSAT is best viewed as a modelfinding procedure. Its good performance suggests that it may be advantageous to reformulate reasoning tasks that have traditionally been viewed as theoremproving problems as modelfinding tasks.
On the Hardness of Approximate Reasoning
, 1996
"... Many AI problems, when formalized, reduce to evaluating the probability that a propositional expression is true. In this paper we show that this problem is computationally intractable even in surprisingly restricted cases and even if we settle for an approximation to this probability. We consider va ..."
Abstract

Cited by 219 (13 self)
 Add to MetaCart
Many AI problems, when formalized, reduce to evaluating the probability that a propositional expression is true. In this paper we show that this problem is computationally intractable even in surprisingly restricted cases and even if we settle for an approximation to this probability. We consider various methods used in approximate reasoning such as computing degree of belief and Bayesian belief networks, as well as reasoning techniques such as constraint satisfaction and knowledge compilation, that use approximation to avoid computational difficulties, and reduce them to modelcounting problems over a propositional domain. We prove that counting satisfying assignments of propositional languages is intractable even for Horn and monotone formulae, and even when the size of clauses and number of occurrences of the variables are extremely limited. This should be contrasted with the case of deductive reasoning, where Horn theories and theories with binary clauses are distinguished by the e...
Knowledge compilation and theory approximation
 Journal of the ACM
, 1996
"... Computational efficiency is a central concern in the design of knowledge representation systems. In order to obtain efficient systems, it has been suggested that one should limit the form of the statements in the knowledge base or use an incomplete inference mechanism. The former approach is often t ..."
Abstract

Cited by 157 (5 self)
 Add to MetaCart
Computational efficiency is a central concern in the design of knowledge representation systems. In order to obtain efficient systems, it has been suggested that one should limit the form of the statements in the knowledge base or use an incomplete inference mechanism. The former approach is often too restrictive for practical applications, whereas the latter leads to uncertainty about exactly what can and cannot be inferred from the knowledge base. We present a third alternative, in which knowledge given in a general representation language is translated (compiled) into a tractable form — allowing for efficient subsequent query answering. We show how propositional logical theories can be compiled into Horn theories that approximate the original information. The approximations bound the original theory from below and above in terms of logical strength. The procedures are extended to other tractable languages (for example, binary clauses) and to the firstorder case. Finally, we demonstrate the generality of our approach by compiling concept descriptions in a general framebased language into a tractable form.
Model Checking vs. Theorem Proving: A Manifesto
, 1991
"... We argue that rather than representing an agent's knowledge as a collection of formulas, and then doing theorem proving to see if a given formula follows from an agent's knowledge base, it may be more useful to represent this knowledge by a semantic model, and then do model checking to see if the g ..."
Abstract

Cited by 117 (5 self)
 Add to MetaCart
We argue that rather than representing an agent's knowledge as a collection of formulas, and then doing theorem proving to see if a given formula follows from an agent's knowledge base, it may be more useful to represent this knowledge by a semantic model, and then do model checking to see if the given formula is true in that model. We discuss how to construct a model that represents an agent's knowledge in a number of different contexts, and then consider how to approach the modelchecking problem.
A Cognitive Theory of Graphical and Linguistic Reasoning: Logic and Implementation
, 1995
"... We discuss external and internal graphical and linguistic representational systems. We argue that a cognitive theory of peoples' reasoning performance must account for (a) the logical equivalence of inferences expressed in graphical and linguistic form; and (b) the implementational differences th ..."
Abstract

Cited by 106 (11 self)
 Add to MetaCart
We discuss external and internal graphical and linguistic representational systems. We argue that a cognitive theory of peoples' reasoning performance must account for (a) the logical equivalence of inferences expressed in graphical and linguistic form; and (b) the implementational differences that affect facility of inference. Our theory proposes that graphical representations limit abstraction and thereby aid processibility. We discuss the ideas of specificity and abstraction, and their cognitive relevance. Empirical support comes from tasks involving (i) the manipulation of external graphics; and (ii) no external graphics. For (i), we take Euler's Circles, provide a novel computational reconstruction, show how it captures abstractions, and contrast it with earlier construals, and with Mental Models' representations. We demonstrate equivalence of the graphical Euler system, and the nongraphical Mental Models system. For (ii), we discuss text comprehension, and the mental ...
A Survey on Knowledge Compilation
, 1998
"... this paper we survey recent results in knowledge compilation of propositional knowledge bases. We first define and limit the scope of such a technique, then we survey exact and approximate knowledge compilation methods. We include a discussion of compilation for nonmonotonic knowledge bases. Keywor ..."
Abstract

Cited by 95 (3 self)
 Add to MetaCart
this paper we survey recent results in knowledge compilation of propositional knowledge bases. We first define and limit the scope of such a technique, then we survey exact and approximate knowledge compilation methods. We include a discussion of compilation for nonmonotonic knowledge bases. Keywords: Knowledge Representation, Efficiency of Reasoning
Computing Least Common Subsumers in Description Logics
 PROCEEDINGS OF THE 10TH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE
, 1992
"... Description logics are a popular formalism for knowledge representation and reasoning. This paper introduces a new operation for description logics: computing the "least common subsumer" of a pair of descriptions. This operation computes the largest set of commonalities between two descriptions. Aft ..."
Abstract

Cited by 86 (14 self)
 Add to MetaCart
Description logics are a popular formalism for knowledge representation and reasoning. This paper introduces a new operation for description logics: computing the "least common subsumer" of a pair of descriptions. This operation computes the largest set of commonalities between two descriptions. After arguing for the usefulness of this operation, we analyze it by relating computation of the least common subsumer to the wellunderstood problem of testing subsumption; a close connection is shown in the restricted case of "structural subsumption". We also present a method for computing the least common subsumer of "attribute chain equalities", and analyze the tractability of computing the least common subsumer of a set of descriptionsan important operation in inductive learning.
Rationality and intelligence
 Artificial Intelligence
, 1997
"... The longterm goal of our field is the creation and understanding of intelligence. Productive research in AI, both practical and theoretical, benefits from a notion of intelligence that is precise enough to allow the cumulative development of robust systems and general results. This paper outlines a ..."
Abstract

Cited by 79 (1 self)
 Add to MetaCart
The longterm goal of our field is the creation and understanding of intelligence. Productive research in AI, both practical and theoretical, benefits from a notion of intelligence that is precise enough to allow the cumulative development of robust systems and general results. This paper outlines a gradual evolution in our formal conception of intelligence that brings it closer to our informal conception and simultaneously reduces the gap between theory and practice. 1 Artificial Intelligence AI is a field in which the ultimate goal has often been somewhat illdefined and subject to dispute. Some researchers aim to emulate human cognition, others aim at the creation of
Defaultreasoning with models
"... Reasoning with modelbased representations is an intuitive paradigm, which has been shown to be theoretically sound and to possess some computational advantages over reasoning with formulabased representations of knowledge. In this paper we present more evidence to the utility of such representatio ..."
Abstract

Cited by 79 (18 self)
 Add to MetaCart
Reasoning with modelbased representations is an intuitive paradigm, which has been shown to be theoretically sound and to possess some computational advantages over reasoning with formulabased representations of knowledge. In this paper we present more evidence to the utility of such representations. In real life situations, one normally completes a lot of missing "context" information when answering queries. We model this situation by augmenting the available knowledge about the world with contextspecific information; we show that reasoning with modelbased representations can be done efficiently in the presence of varying context information. We then consider the task of default reasoning. We show that default reasoning is a generalization of reasoning within context, in which the reasoner has many "context" rules, which may be conflicting. We characterize the cases in which modelbased reasoning supports efficient default reasoning and develop algorithms that handle efficiently fragments of Reiter's default logic. In particular, this includes cases in which performing the default reasoning task with the traditional, formulabased, representation is intractable. Further, we argue that these results support an incremental view of reasoning in a natural way.