Results 11  20
of
204
Interpolation Theorems, Lower Bounds for Proof Systems, and Independence Results for Bounded Arithmetic
"... A proof of the (propositional) Craig interpolation theorem for cutfree sequent calculus yields that a sequent with a cutfree proof (or with a proof with cutformulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuitsize is at most k. We ..."
Abstract

Cited by 86 (2 self)
 Add to MetaCart
A proof of the (propositional) Craig interpolation theorem for cutfree sequent calculus yields that a sequent with a cutfree proof (or with a proof with cutformulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuitsize is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: 1. Feasible interpolation theorems for the following proof systems: (a) resolution. (b) a subsystem of LK corresponding to the bounded arithmetic theory S 2 2 (ff). (c) linear equational calculus. (d) cutting planes. 2. New proofs of the exponential lower bounds (for new formulas) (a) for resolution ([15]). (b) for the cutting planes proof system with coefficients written in unary ([4]). 3. An alternative proof of the independence result of [43] concerning the provability of circuitsize lower bounds ...
Ten challenges in propositional reasoning and search
, 1997
"... The past several years have seen much progress in the area of propositional reasoning and satisfiability testing. There is a growing consensus by researchers on the key technical challenges that need to be addressed in order to maintain this momentum. This paper outlines concrete technical challenge ..."
Abstract

Cited by 81 (3 self)
 Add to MetaCart
The past several years have seen much progress in the area of propositional reasoning and satisfiability testing. There is a growing consensus by researchers on the key technical challenges that need to be addressed in order to maintain this momentum. This paper outlines concrete technical challenges in the core areas of systematic search, stochastic search, problem encodings, and criteria for evaluating progress in this area. 1
Lower Bounds for Cutting Planes Proofs with Small Coefficients
, 1995
"... We consider smallweight Cutting Planes (CP ) proofs; that is, Cutting Planes (CP ) proofs with coefficients up to P oly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP proofs, for a family of tautologies based on the cl ..."
Abstract

Cited by 75 (19 self)
 Add to MetaCart
We consider smallweight Cutting Planes (CP ) proofs; that is, Cutting Planes (CP ) proofs with coefficients up to P oly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of smallweight CP , our method also gives a new and simpler exponential lower bound for Resolution. We also prove the following two theorems : (1) Treelike CP proofs cannot polynomially simulate nontreelike CP proofs. (2) Treelike CP proofs and BoundeddepthFrege proofs cannot polynomially simulate each other. Our proofs also work for some generalizations of the CP proof system. In particular, they work for CP with a deduction rule, and also for proof systems that allow any formula with small communication complexity, and any set of sound rules of inference. 1 Introduction One of the most fundamental questions in pro...
Towards understanding and harnessing the potential of clause learning
 Journal of Artificial Intelligence Research
, 2004
"... Efficient implementations of DPLL with the addition of clause learning are the fastest complete Boolean satisfiability solvers and can handle many significant realworld problems, such as verification, planning and design. Despite its importance, little is known of the ultimate strengths and limitat ..."
Abstract

Cited by 69 (10 self)
 Add to MetaCart
Efficient implementations of DPLL with the addition of clause learning are the fastest complete Boolean satisfiability solvers and can handle many significant realworld problems, such as verification, planning and design. Despite its importance, little is known of the ultimate strengths and limitations of the technique. This paper presents the first precise characterization of clause learning as a proof system (CL), and begins the task of understanding its power by relating it to the wellstudied resolution proof system. In particular, we show that with a new learning scheme, CL can provide exponentially shorter proofs than many proper refinements of general resolution (RES) satisfying a natural property. These include regular and DavisPutnam resolution, which are already known to be much stronger than ordinary DPLL. We also show that a slight variant of CL with unlimited restarts is as powerful as RES itself. Translating these analytical results to practice, however, presents a challenge because of the nondeterministic nature of clause learning algorithms. We propose a novel way of exploiting the underlying problem structure, in the form of a high level problem description such as a graph or PDDL specification, to guide clause learning algorithms toward faster solutions. We show that this leads to exponential speedups on grid and randomized pebbling problems, as well as substantial improvements on certain ordering formulas. 1.
On the Weak Pigeonhole Principle
, 2001
"... We investigate the proof complexity, in (extensions of) resolution and in bounded arithmetic, of the weak pigeonhole principle and of Ramsey theorem. In particular, we link the proof complexity of these two principles. Further we give lower bounds to the width of resolution proofs and to the size of ..."
Abstract

Cited by 67 (3 self)
 Add to MetaCart
We investigate the proof complexity, in (extensions of) resolution and in bounded arithmetic, of the weak pigeonhole principle and of Ramsey theorem. In particular, we link the proof complexity of these two principles. Further we give lower bounds to the width of resolution proofs and to the size of (extensions of) treelike resolution proofs of Ramsey theorem. We establish a connection between provability of WPHP in fragments of bounded arithmetic and cryptographic assumptions (the existence of oneway functions). In particular, we show that functions violating WPHP 2n n are oneway and, on the other hand, that oneway permutations give rise to functions violating PHP n+1 n , and that strongly collisionfree families of hash functions give rise to functions violating WPHP 2n n (all in suitable models of bounded arithmetic). Further we formulate few problems and conjectures; in particular, on the structured PHP (introduced here) and on the unrelativised WPHP. The symbol WPHP m n...
An Exponential Lower Bound to the Size of Bounded Depth Frege . . .
, 1994
"... We prove lower bounds of the form exp (n ffl d ) ; ffl d ? 0; on the length of proofs of an explicit sequence of tautologies, based on the Pigeonhole Principle, in proof systems using formulas of depth d; for any constant d: This is the largest lower bound for the strongest proof system, for whic ..."
Abstract

Cited by 66 (10 self)
 Add to MetaCart
We prove lower bounds of the form exp (n ffl d ) ; ffl d ? 0; on the length of proofs of an explicit sequence of tautologies, based on the Pigeonhole Principle, in proof systems using formulas of depth d; for any constant d: This is the largest lower bound for the strongest proof system, for which any superpolynomial lower bounds are known.
Lower bounds on Hilbert's Nullstellensatz and propositional proofs
 PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY
, 1996
"... The socalled weak form of Hilbert's Nullstellensatz says that a system of algebraic equations over a field, Qj(x) = 0, does not have a solution in the algebraic closure if and only if 1 is in the ideal generated by the polynomials (?,(*) • We shall prove a lower bound on the degrees of polynomials ..."
Abstract

Cited by 61 (18 self)
 Add to MetaCart
The socalled weak form of Hilbert's Nullstellensatz says that a system of algebraic equations over a field, Qj(x) = 0, does not have a solution in the algebraic closure if and only if 1 is in the ideal generated by the polynomials (?,(*) • We shall prove a lower bound on the degrees of polynomials P,(x) such that £, P,(x)Qt(x) = 1. This result has the following application. The modular counting principle states that no finite set whose cardinality is not divisible by q can be partitioned into ^element classes. For each fixed cardinality N, this principle can be expressed as a propositional formula Count^fo,...) with underlying variables xe, where e ranges over <7element subsets of N. Ajtai [4] proved recently that, whenever p,q are two different primes, the propositional formulas Count $ n+I do not have polynomial size, constantdepth Frege proofs from substitution instances of Count/?, where m^O (modp). We give a new proof of this theorem based on the lower bound for Hilbert's Nullstellensatz. Furthermore our technique enables us to extend the independence results for counting principles to composite numbers p and q. This improved lower bound together with new upper bounds yield an exact characterization of when Count, can be proved efficiently from Countp, for all values of p and q.
The efficiency of resolution and DavisPutnam procedures
 SIAM Journal on Computing
, 1999
"... We consider several problems related to the use of resolutionbased methods for determining whether a given boolean formula in conjunctive normal form is satisfiable. First, building on work of Clegg, Edmonds and Impagliazzo, we give an algorithm for satisfiability that when given an unsatisfiabl ..."
Abstract

Cited by 53 (1 self)
 Add to MetaCart
We consider several problems related to the use of resolutionbased methods for determining whether a given boolean formula in conjunctive normal form is satisfiable. First, building on work of Clegg, Edmonds and Impagliazzo, we give an algorithm for satisfiability that when given an unsatisfiable formula of F finds a resolution proof of F , and the runtime of our algorithm is nontrivial as a function of the size of the shortest resolution proof of F . Next we investigate a class of backtrack search algorithms, commonly known as DavisPutnam procedures and provide the first averagecase complexity analysis for their behavior on random formulas. In particular, for a simple algorithm in this class, called ordered DLL we prove that the running time of the algorithm on a randomly generated kCNF formula with n variables and m clauses is 2 Q(n(n/m) 1/(k2) ) with probability 1  o(1). Finally, we give new lower bounds on res(F), the size of the smallest resolution refutation ...
Lower Bounds to the Size of ConstantDepth Propositional Proofs
, 1994
"... 1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp ..."
Abstract

Cited by 53 (6 self)
 Add to MetaCart
1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp(O(log 2 n)) but such that every depth d refutation must have the size at least exp(n\Omega\Gamma21 ). The sets T d n express a weaker form of the pigeonhole principle. It is a fundamental problem of mathematical logic and complexity theory whether there exists a proof system for propositional logic in which every tautology has a short proof, where the length (equivalently the size) of a proof is measured essentially by the total number of symbols in it and short means polynomial in the length of the tautology. Equivalently one can ask whether for every theory T there is another theory S (both first order and reasonably axiomatized, e.g. by schemes) having the property that if a statement...
Resolution proofs of generalized pigeonhole principles
 Theoretical Computer Science
, 1988
"... We extend results of A. Haken to give an exponential lower bound on the size of resolution proofs for propositional formulas encoding a generalized pigeonhole principle. These propositional formulas express the fact that there is no oneone mapping from c · n objects to n objects when c>1. As a coro ..."
Abstract

Cited by 51 (4 self)
 Add to MetaCart
We extend results of A. Haken to give an exponential lower bound on the size of resolution proofs for propositional formulas encoding a generalized pigeonhole principle. These propositional formulas express the fact that there is no oneone mapping from c · n objects to n objects when c>1. As a corollary, resolution proof systems do not psimulate constant formula depth Frege proof systems. 1.