Results 1  10
of
21
Languages That Capture Complexity Classes
 SIAM Journal of Computing
, 1987
"... this paper a series of languages adequate for expressing exactly those properties checkable in a series of computational complexity classes. For example, we show that a property of graphs (respectively groups, binary strings, etc.) is in polynomial time if and only if it is expressible in the first ..."
Abstract

Cited by 230 (21 self)
 Add to MetaCart
this paper a series of languages adequate for expressing exactly those properties checkable in a series of computational complexity classes. For example, we show that a property of graphs (respectively groups, binary strings, etc.) is in polynomial time if and only if it is expressible in the first order language of graphs (respectively groups, binary strings, etc.) together with a least fixed point operator. As another example, a property is in logspace if and only if it is expressible in first order logic together with a deterministic transitive closure operator. The roots of our approach to complexity theory go back to 1974 when Fagin showed that the NP properties are exactly those expressible in second order existential sentences. It follows that second order logic expresses exactly those properties which are in the polynomial time hierarchy. We show that adding suitable transitive closure operators to second order logic results in languages capturing polynomial space and exponential time, respectively. The existence of such natural languages for each important complexity class sheds a new light on complexity theory. These languages reaffirm the importance of the complexity classes as much more than machine dependent issues. Furthermore a whole new approach is suggested. Upper bounds (algorithms) can be produced by expressing the property of interest in one of our languages. Lower bounds may be demonstrated by showing that such expression is impossible.
Reachability is harder for directed than for undirected finite graphs
 Journal of Symbolic Logic
, 1990
"... Abstract. Although it is known that reachability in undirected finite graphs can be expressed by an existential monadic secondorder sentence, our main result is that this is not the case for directed finite graphs (even in the presence of certain “builtin ” relations, such as the successor relatio ..."
Abstract

Cited by 70 (8 self)
 Add to MetaCart
Abstract. Although it is known that reachability in undirected finite graphs can be expressed by an existential monadic secondorder sentence, our main result is that this is not the case for directed finite graphs (even in the presence of certain “builtin ” relations, such as the successor relation). The proof makes use of EhrenfeuchtFrai’sse games, along with probabilistic arguments. However, we show that for directed finite graphs with degree at most k, reachability is expressible by an existential monadic secondorder sentence. $1. Introduction. If s and t denote distinguished points in a directed (resp. undirected) graph, then we say that a graph is (s, t)connected if there is a directed (undirected) path from s to t. We sometimes refer to the problem of deciding whether a given directed (undirected) graph with two given points sand t is (s, t)connected as the directed (undirected) reachability problem.
Languages which capture complexity classes
 SIAM J. on Computing
, 1987
"... We present in this paper a series of languages adequate for expressing exactly those properties checkable in a series of computational complexity classes. For example, we show that a graph property is in polynomial time if and only if it is ..."
Abstract

Cited by 52 (5 self)
 Add to MetaCart
We present in this paper a series of languages adequate for expressing exactly those properties checkable in a series of computational complexity classes. For example, we show that a graph property is in polynomial time if and only if it is
Descriptive and Computational Complexity
 COMPUTATIONAL COMPLEXITY THEORY, PROC. SYMP. APPLIED MATH
, 1989
"... Computational complexity began with the natural physical notions of time and space. Given a property, S, an important issue is the computational complexity of checking whether or not an input satisfies S. For a long time, the notion of complexity referred to the time or space used in the computatio ..."
Abstract

Cited by 46 (0 self)
 Add to MetaCart
Computational complexity began with the natural physical notions of time and space. Given a property, S, an important issue is the computational complexity of checking whether or not an input satisfies S. For a long time, the notion of complexity referred to the time or space used in the computation. A mathematician might ask, "What is the complexity of expressing the property S?" It should not be surprising that these two questions  that of checking and that of expressing  are related. However it is startling how closely tied they are when the second question refers to expressing the property in firstorder logic. Many complexity classes originally defined in terms of time or space resources have precise definitions as classes in firstorder logic. In 1974 Fagin gave a characterization of nondeterministic polynomial time (NP) as the set of properties expressible in secondorder existential logic
Default Logic as a Query Language
, 1997
"...  Research in nonmonotonic reasoning has focused largely on the idea of representing knowledge about the world via rules that are generally true but can be defeated. Even if relational databases are nowadays the main tool for storing very large sets of data, the approach of using nonmonotonic AI f ..."
Abstract

Cited by 43 (10 self)
 Add to MetaCart
 Research in nonmonotonic reasoning has focused largely on the idea of representing knowledge about the world via rules that are generally true but can be defeated. Even if relational databases are nowadays the main tool for storing very large sets of data, the approach of using nonmonotonic AI formalisms as relational database query languages has been investigated to a much smaller extent. In this work we propose a novel application of Reiter's default logic by introducing a default query language (DQL) for nite relational databases, which is based on default rules. The main result of this paper is that DQL is as expressive as SO 98 , the existentialuniversal fragment of secondorder logic. This result is not only of theoretical importance: We exhibit queries {which are useful in practice{ that can be expressed with DQL and can not with other query languages based on nonmonotonic logics such as DATALOG with negation under the stable model semantics. In particular, we show that DQ...
Fixpoint Logics, Relational Machines, and Computational Complexity
 In Structure and Complexity
, 1993
"... We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have t ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have the complexity classes between P and EXPTIME. Our parameterized fixpoint logics capture the complexity classes P, NP, PSPACE, and EXPTIME, but equality is achieved only over ordered structures. There is, however, an inherent mismatch between complexity and logic  while computational devices work on encodings of problems, logic is applied directly to the underlying mathematical structures. To overcome this mismatch, we develop a theory of relational complexity, which bridges tha gap between standard complexity and fixpoint logic. On one hand, we show that questions about containments among standard complexity classes can be translated to questions about containments among relational complex...
On Winning Ehrenfeucht Games and Monadic NP
 Annals of Pure and Applied Logic
, 1996
"... Inexpressibility results in Finite Model Theory are often proved by showing that Duplicator, one of the two players of an Ehrenfeucht game, has a winning strategy on certain structures. In this article a new method is introduced that allows, under certain conditions, the extension of a winning strat ..."
Abstract

Cited by 21 (3 self)
 Add to MetaCart
Inexpressibility results in Finite Model Theory are often proved by showing that Duplicator, one of the two players of an Ehrenfeucht game, has a winning strategy on certain structures. In this article a new method is introduced that allows, under certain conditions, the extension of a winning strategy of Duplicator on some small parts of two finite structures to a global winning strategy. As applications of this technique it is shown that (*) Graph Connectivity is not expressible in existential monadic secondorder logic (MonNP), even in the presence of a builtin linear order, (*) Graph Connectivity is not expressible in MonNP even in the presence of arbitrary builtin relations of degree n^o(1), and (*) the presence of a builtin linear order gives MonNP more expressive power than the presence of a builtin successor relation.
Subclasses of Binary NP
, 1996
"... Binary NP consists of all sets of finite structures which are expressible in existential second order logic with second order quantification restricted to relations of arity 2. We look at semantical restrictions of binary NP, where the second order quantifiers range only over certain classes of rela ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
Binary NP consists of all sets of finite structures which are expressible in existential second order logic with second order quantification restricted to relations of arity 2. We look at semantical restrictions of binary NP, where the second order quantifiers range only over certain classes of relations. We consider mainly three types of classes of relations: unary functions, order relations and graphs with degree bounds. We show that many of these restrictions have the same expressive power and establish a 4level strict hierarchy, represented by sets, permutations, unary functions and arbitrary binary relations, respectively.
Spectra with Only Unary Function Symbols
, 1997
"... The spectrum of a firstorder sentence is the set of cardinalities of its finite models. This paper is concerned with spectra of sentences over languages that contain only unary function symbols. In particular, it is shown that a set S of natural numbers is the spectrum of a sentence over the langua ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
The spectrum of a firstorder sentence is the set of cardinalities of its finite models. This paper is concerned with spectra of sentences over languages that contain only unary function symbols. In particular, it is shown that a set S of natural numbers is the spectrum of a sentence over the language of one unary function symbol precisely if S is an eventually periodic set.
Logic meets algebra: the case of regular languages
 Logical Methods in Computer Science
"... Abstract. The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Büchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Abstract. The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Büchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and blockproducts of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory. 1.